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ABSTRACT
High-performing teams learn effective communication strategies to
judiciously share information and reduce the cost of communication
overhead. Within multi-agent reinforcement learning, synthesiz-
ing effective policies requires reasoning about when to communi-
cate, whom to communicate with, and how to process messages.
We propose a novel multi-agent reinforcement learning algorithm,
Multi-Agent Graph-attentIon Communication (MAGIC), with a
graph-attention communication protocol in which we learn 1) a
Scheduler to help with the problems of when to communicate and
whom to address messages to, and 2) a Message Processor using
Graph Attention Networks (GATs) with dynamic graphs to deal
with communication signals. The Scheduler consists of a graph
attention encoder and a differentiable attention mechanism, which
outputs dynamic, differentiable graphs to the Message Processor,
which enables the Scheduler and Message Processor to be trained
end-to-end. We evaluate our approach on a variety of cooperative
tasks, including Google Research Football. Our method outperforms
baselines across all domains, achieving ≈ 10.5% increase in reward
in the most challenging domain. We also show MAGIC communi-
cates 27.4% more efficiently on average than baselines, is robust to
stochasticity, and scales to larger state-action spaces. Finally, we
demonstrate MAGIC on a physical, multi-robot testbed.
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1 INTRODUCTION
Communication is a key component of successful coordination,
enabling the agents to convey information and cooperate to col-
lectively achieve shared goals [26, 31]. In high-performing human
teams, human experts judiciously choose when to communicate and
whom to communicate with, communicating only when beneficial
[6, 30, 38]. Each team member exhibits the role of a communicator
and message receiver, relaying valuable information to the right
teammates and incorporating received information effectively.

In this paper, we propose Multi-Agent Graph-attentIon Com-
munication (MAGIC), a novel graph communication protocol that
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determines “when" and “whom" with to communicate via an end-
to-end framework. We set a new state-of-the-art in communication-
based multi-agent reinforcement learning (MARL) by modeling the
topology of interactions among agents (the local and global charac-
terization of connections between agents [1]) as a dynamic directed
graph that accommodates time-varying communication needs and
accurately captures the relations between agents. Our proposed
framework emulates the features of an effective human-human
team through its key components, 1) the Scheduler, which helps
each agent to decide when it should communicate and whom it
should communicate with, and 2) theMessage Processor, which inte-
grates and processes received messages in preparation for decision
making. We find MAGIC produces high-performance, cooperative
behavior through its efficient communication protocol.

There has been recent success in MARL for Multiplayer On-
line Battle Arena (MOBA) games such as StarCraft II and Dota II
[2, 3, 40]. MARL seeks to enable agents to share information to
improve team performance [7, 8, 27, 35, 37, 41]. However, most
prior work in MARL fails to capture the complex relations among
agents, leading to low-performance and inefficient communication.
While [35] and [17] are able to efficiently decide when to broad-
cast messages, agents will broadcast these messages to all other
agents without targets, resulting in wasteful communication. Even
with targeted communication [7], failure to assess when to com-
municate results in poor performance, as we display in Section 6.
However, determining when to communicate and whom to commu-
nicate with is not enough. Selectively utilizing received messages
can significantly improve performance. Yet, none of these methods
simultaneously address “when" and with “whom", and “how" to
communicate while modeling agent interaction topology.

Our communication protocol, MAGIC, utilizes a Scheduler con-
sisting of a graph attention encoder and a differentiable hard atten-
tion mechanism to decide when to communicate and whom to com-
municate with. This information is encoded within a directed graph,
allowing us to represent the interaction among agents precisely.
The Message Processor consisting of a Graph Attention Network
(GAT), utilizes received messages and the directed graph to intel-
ligently and efficiently process messages. The encoded messages
are then used in each agent’s policy, leading to high-performance
cooperation and efficient communication, as shown in Section 6.
We provide the following contributions:

(1) Develop a novel graph-attention communication protocol
for MARL that utilizes 1) a Scheduler to solve the problems
of when to communicate and whom to address messages
to, and 2) a Message Processor using GATs with dynamic
directed graphs to integrate and process messages.

(2) Enable GATs in the Message Processor to deal with differ-
entiable graphs, which is not supported by standard GATs.
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In this way, the framework is completely differentiable and
can be trained in an end-to-end manner.

(3) Outperform prior methods across three domains, includ-
ing the Google Research Football environment, achieving
a 10.5% increase in reward. Further, MAGIC learns to com-
municate 27.4% more efficiently than the average baseline.
These results set a new state-of-the-art in MARL.

(4) Demonstrate our algorithm on physical robots in a 3-vs.-2
soccer scenario on a physical, multi-robot testbed.

2 RELATEDWORK
Coordinating multi-agent teams is a challenging computational
problem [10–12, 18, 33, 36]. In multi-agent settings, each agent
observes other agents as part of the environment, causing the envi-
ronment to appear dynamic and non-stationary. Further difficulty
arises due to the issue of credit assignment, where it is difficult for
each agent to deduce its own contribution to the team’s success
(especiallywhen there are only global rewards). To solve thesemulti-
agent challenges, many researchers in MARL [5] have pursued cen-
tralized training and decentralized execution. Further extensions
allow agents to exchange messages during execution, allowing for
increased performance. Here, we present recent work in MARL.
MARL with Centralized Critic – Some works extend variants of
actor-critic algorithms to multi-agent settings and learn decentral-
ized policy through centralized critics without explicit communi-
cation channels [9, 13, 23]. MADDPG [23] is a MARL framework
based on Deep Deterministic Policy Gradient, and can be applied in
both cooperative and competitive scenarios. COMA [9] extends on-
policy actor-critic and proposes a counterfactual baseline to address
the credit assignment problem. While these works present critical
improvements in the field of MARL, the ability to communicate
and process information allows for much-increased performance.
As we show in Section 6.4, the ability to communicate results in a
88.9% performance gain for our method.
MARLwithCommunication –Recentworks have enabled agents
to communicate and exchange messages during execution. Differen-
tiable Inter-Agent Learning (DIAL) [8] builds up limited-bandwidth
differentiable discrete communication channels among agents. Comm-
Net [37] extends to a continuous communication protocol designed
for fully cooperative tasks. Agents receive averaged encoded hidden
states from other agents and use the messages to make decisions.
However, utilizing a sum or average of messages results in some
information loss. IC3Net [35] uses a gating mechanism to enable
the agents to decide when to communicate, and thus is amenable
to competitive scenarios. However, both IC3Net and CommNet
process messages with a simple average. The proper integration
of these messages is critically important for communication, as
displayed by the performance of our results in Section 6. TarMAC
[7] achieves targeted communication with a signature-based soft-
attention mechanism. The integrated signal for each agent is the
weighted mean of values generated by all agents. This work does
not explicitly consider when to communicate and whom to send
messages or the topology of agent interactions, which can help
save communication resources and process messages more elabo-
rately and efficiently. ATOC [16], employs an attention mechanism
to decide if an agent should communicate in its observable field.

SchedNet [17] proposes a weight-based scheduler to pick agents
who should broadcast their messages. However, both ATOC and
SchedNet have to manually configure their communication groups.
Our communication protocol intelligently decides when and with
whom to communicate through a graph-attention based Scheduler
resulting in a large performance gain (≈ 38% average increase in
reward in our most difficult domain) compared to prior work.
MARL using Graph Neural Networks Graph Neural Networks
(GNNs) are powerful tools for learning from data with graph struc-
tures [32, 42–44]. To model the interactions between agents, MARL
has utilized GNNs to allow for a graph-based representation [15,
20, 24, 34]. DGN [15] represents the multi-agent environment as
a graph and employ multi-head dot-production attention as the
convolutional kernel to extract relational features between agents.
MAGNet [24] learns multi-agent policies in the Pommerman game
by utilizing a relevance graph and message passing mechanism.
The graphs are static and constructed based on heuristic rules.
[34] learns a hierarchical topology of the communication struc-
ture dynamically by electing central agents. HAMA [29] designs
a hierarchical graph attention network to model the hierarchical
relationships between agents in both cooperative and competitive
scenarios. G2ANet [22] combines a hard-attention and a soft at-
tention mechanism to dynamically learns interactions between
agents. In this work, we modify standard graph attention networks
to be compatible with a differentiable directed graph, allowing us
to represent the interactions among agents more accurately during
communication.

We improve upon prior frameworks by utilizing a Scheduler
to solve the problems of when to communicate and whom to ad-
dress messages to, and a Message Processor using GATs with dy-
namic directed graphs to integrate and process messages. In this
way, we achieve efficient and targeted message sending and high-
performance message comprehension.

3 PRELIMINARIES
3.1 Partially Observable Markov Game
A Markov Game [21] is the multi-agent version of Markov Deci-
sion Process (MDP). We are primarily concerned with a partially
observable Markov game. A partially observable Markov game
(POMG) for 𝑁 agents can be defined by a set of global states, 𝑆 , a
set of private observations for each agent, 𝑂1,𝑂2, . . . ,𝑂𝑁 , a set of
actions for each agent, 𝐴1, 𝐴2, . . . , 𝐴𝑁 , and the transition function,
𝑇 : 𝑆 ×𝐴1 × . . .×𝐴𝑁 ↦→ 𝑆 . In each time step, agent 𝑖 chooses action,
𝑎𝑖 ∈ 𝐴𝑖 , obtains reward as a function of state, 𝑆 , and its action
𝑟𝑖 : 𝑆 ×𝐴𝑖 ↦→ R, and receives a local observation 𝑜𝑖 : 𝑆 ↦→ 𝑂𝑖 . The
initial state is defined by a initial state distribution 𝜌 . Agent 𝑖 aims to
maximize its discounted reward 𝑅𝑖 =

∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡
𝑖
, where 𝛾 ∈ [0, 1] is

a discounted factor. Our work is based on the framework of POMG
augmented with communication.

3.2 Reinforcement Learning: Policy Gradients
The Policy Gradient method (Equation 1) is widely used in rein-
forcement learning (RL) tasks to perform gradient ascent on the
agent policy parameters, \ , to optimize the total discounted reward,
𝐽 (\ ) = E𝑠∼𝑝𝜋 ,𝑎∼𝜋\ [𝑅]. 𝜌𝜋 is the state distribution, 𝜋\ is the policy
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distribution, and 𝑅𝑡 =
∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′).

∇\ 𝐽 (\ ) = E𝑠∼𝜌𝜋 ,𝑎∼𝜋\
[ 𝑇∑
𝑡=1
∇\ log𝜋\ (𝑎𝑡 |𝑠𝑡 )𝑅𝑡

]
(1)

In lieu of 𝑅𝑡 , we use the advantage function,𝐴𝜋 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅𝑡 −𝑉 (𝑠𝑡 ),
to decrease the variance of the estimated policy gradient, where
𝑉 (𝑠𝑡 ) is the value function.

3.3 Graph Neural Networks
In Graph Neural Networks (GNNs), each GNN layer computes the
node representation by message passing, where each node aggre-
gates the feature vectors from its neighboring nodes in the graph
at the previous layer. The update rule for node representations by
a GNN layer is displayed in Equation 2.

ℎ
(𝑙)
𝑖

= 𝜎
©«
∑
𝑗 ∈𝑁𝑖

1√
𝑑𝑖𝑑 𝑗
(ℎ (𝑙−1)
𝑗

𝑊 (𝑙) )ª®¬ (2)

Here, ℎ (𝑙)
𝑖

represents the features of node 𝑖 , at layer 𝑙 . 𝑁𝑖 is the set of
neighboring nodes of node 𝑖 , 𝑑𝑖 = |𝑁𝑖 | is the degree of node 𝑖 ,𝑊 (𝑙)
is a learnable weighting matrix for layer 𝑙 , and 𝜎 (·) is a nonlinear
activation function. In this paper, we enable our GATs within the
Message Processor to function with differentiable graphs (Section
4.3), allowing for end-to-end training.

Figure 1: This figure displays the framework of our multi-
agent graph-attention communication protocol.

4 METHOD
In this section, we introduce our proposed Multi-Agent Graph-
attentIon Communication protocol, MAGIC. We consider a par-
tially observable setting of 𝑁 agents, where agent 𝑖 receives local
observation, 𝑜𝑡

𝑖
, at time, 𝑡 , containing local information from the

global state, 𝑆 . The agent, 𝑖 , learns a communication-based policy,
𝜋𝑖 , to output a distribution over actions, 𝑎 (𝑡 )

𝑖
∼ 𝜋𝑖 , at each time step,

𝑡 . Here, we present an overview of our framework, the description
of our protocol’s key components (i.e., the Scheduler and Message
Processor), and our training procedure.

4.1 Overview
Our proposed graph-attention communication protocol is displayed
in Figure 1. At time step, 𝑡 , the observation for each agent, 𝑜𝑡

𝑖
, is

first encoded using an agent-specific fully-connected layer (FC).
The encoded observation is passed into an agent-specific LSTM cell
to generate a hidden state, ℎ𝑡

𝑖
, as shown in Equation 3.

ℎ𝑡𝑖 , 𝑐
𝑡
𝑖 = 𝐿𝑆𝑇𝑀 (𝑒 (𝑜𝑡𝑖 ), ℎ

𝑡−1
𝑖 , 𝑐𝑡−1𝑖 ) (3)

In this equation, 𝑐𝑡
𝑖
is the cell state for agent, 𝑖 , at time step, 𝑡 ,

and 𝑒 (·) is a fully-connected layer acting as an encoder for the
observation. The hidden state, ℎ𝑡

𝑖
, is then encoded as a message,

𝑚
𝑡 (0)
𝑖

= 𝑒𝑚 (ℎ𝑡𝑖 ), through the encoder, 𝑒𝑚 (·) (a fully-connected
layer). Here, the exponent notation for the message,𝑚𝑡 (0)

𝑖
, denotes

that message is for agent 𝑖 , and is prior to any message aggregation
or processing. We refer to this stage, where the message has not
been processed, as round 0, giving the exponent notation, 𝑡 (0).

As shown in Figure 1, we define the function module to help
agents decide whom to send messages at each time step as the
“Scheduler" and define the function module to process messages as
“Message Processor." The Scheduler and the Message Processor may
include multiple sub-schedulers and sub-processors, respectively.
Prior work has termed the procedure of processing messages for
multiple iterations as multi-round communication [7]. As multi-
round communication has been shown to improve performance,
our protocol supports 𝐿 rounds of communication, where 𝐿 ∈ N. A
round of communication, 𝑙 , is defined as a forward pass through a
sub-scheduler and sub-processor. As shown in Figure 1, the encoded
messages,𝑚𝑡 (0)

𝑖
are passed into Sub-Scheduler 1 and Sub-Processor

1 (i.e., the sub-scheduler and sub-processor at round 1).
The Sub-Scheduler 𝑙 (at round, 𝑙 ∈ 𝐿) will output an adjacency

matrix, 𝐺𝑡 (𝑙) .𝐺𝑡 (𝑙) is a directed graph that indicates the targeted
receivers for each agent at time step, 𝑡 . 𝐺𝑡 (𝑙) is utilized by the
Sub-Processor, 𝑙 , to produce a set of integrated messages, {𝑚𝑡 (𝑙)

𝑖
}𝑁1 ,

where 𝑚𝑡 (𝑙)
𝑖

is the integrated message for agent, 𝑖 , at time step,
𝑡 . The integrated messages for each agent, 𝑖 , can be incorporated
into agent 𝑖’s policy (in the case where we are on the last round of
communication, 𝑙 = 𝐿) or be further processed by more rounds of
communication (𝑙 < 𝐿). If the messages are to be further processed,
the set of messages outputted from round 𝑙 , {𝑚𝑡 (𝑙)

𝑖
}𝑁1 , are passed

into the Sub-Scheduler 𝑙 + 1 and the Sub-Processor 𝑙 + 1, producing
adjacency matrix 𝐺𝑡 (𝑙+1) and messages {𝑚𝑡 (𝑙+1)

𝑖
}𝑁1 respectively.

The message outputted from the Message Processor,𝑚𝑡 (𝐿)
𝑖

, for
agent, 𝑖 , is encoded through a fully-connected layer, 𝑒 ′𝑚 (·), to pro-
duce an intelligently integrated message,𝑚𝑡

𝑖
= 𝑒 ′𝑚 (𝑚

𝑡 (𝐿)
𝑖
).𝑚𝑡

𝑖
is

concatenated with the hidden state, ℎ𝑡
𝑖
, to produce the input feature

to the policy head and the value head. The policy head is a fully-
connected layer followed by a softmax function. We sample the
action for the 𝑖-th agent at time step, 𝑡 , from the policy output dis-
tribution: 𝑎𝑡

𝑖
∼ 𝜋𝑖 (𝑎𝑡𝑖 |𝑜

𝑡
𝑖
). The value head is a single fully-connected

layer and serves as a baseline function for our MARL algorithm.
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Figure 2: This figure displays the details and components of
the Scheduler.

4.2 The Scheduler
The Scheduler decides when each agent should send messages and
whom each agent should address messages to, as shown in Figure 2.
As a black-box, the Scheduler takes as input the encoded messages,
{𝑚𝑡 (0)

𝑖
}𝑁1 , and outputs the directed graphs, {𝐺𝑡 (𝑙) }𝐿1 , as represented

in 𝑓𝑆𝑐ℎ𝑒𝑑 (·) shown in Equation 4.

{𝐺𝑡 (𝑙) }𝐿1 = 𝑓𝑆𝑐ℎ𝑒𝑑

(
𝑚
𝑡 (0)
1 , · · · ,𝑚𝑡 (0)

𝑁

)
(4)

As noted in Section 4.1, the Scheduler consists of𝐿 Sub-Schedulers,
each producing an adjacency matrix 𝐺𝑡 (𝑙) . A Sub-Scheduler con-
sists of a GAT encoder and a hard attention mechanism that uses
a multi-layer perceptron (MLP) and a Gumbel Softmax function
[14]. The GAT encoder helps encode local or global information for
an agent efficiently, and it is only used in the first Sub-Scheduler.
We adopt the same form of GATs as proposed in [39], where the
attention mechanism is expressed in Equation 5.

𝛼𝑆𝑖 𝑗 =

𝑒𝑥𝑝

(
𝐿𝑅𝑒𝐿

(
𝑎𝑇
𝑆
[𝑊𝑆𝑚

𝑡 (0)
𝑖
| |𝑊𝑆𝑚

𝑡 (0)
𝑗
]
))

∑
𝑘∈𝑁 𝑡

𝑖
∪𝑖 𝑒𝑥𝑝

(
𝐿𝑅𝑒𝐿

(
𝑎𝑇
𝑆
[𝑊𝑆𝑚

𝑡 (0)
𝑖
| |𝑊𝑆𝑚

𝑡 (0)
𝑘
]
)) (5)

Here, 𝐿𝑅𝑒𝐿(·) is the LeakyReLU [25], 𝑎𝑆 ∈ 𝑅𝐷
′ is a weighting

vector, 𝑁 𝑡
𝑖
∪ 𝑖 is the set of neighboring agents for the 𝑖-th agent,

including agent 𝑖 , at time step, 𝑡 , and𝑊𝑆 ∈ 𝑅𝐷
′×𝐷 is a weighting

matrix, where 𝐷 ′ and 𝐷 refer to the output feature cardinality and
message cardinality, respectively. The node features of each agent
are obtained through Equation 6.

𝑒𝑡𝑖 = 𝐸𝐿𝑈
©«

∑
𝑗 ∈𝑁 𝑡

𝑖
∪𝑖
𝛼𝑆𝑖 𝑗𝑊𝑆𝑚

𝑡 (0)
𝑗

ª®®¬ (6)

Here, 𝐸𝐿𝑈 (·) is the Exponential Linear Unit (ELU) function. After
concatenating the node feature vectors pairwise, supposing 𝐸𝑡

𝑖, 𝑗
=

(𝑒𝑡
𝑖
| |𝑒𝑡
𝑗
), we obtain a matrix 𝐸𝑡 ∈ R𝑁×𝑁×2𝐷 , where 𝐸𝑡

𝑖, 𝑗
represents

a high-level representation of relational features between the 𝑖-th
and 𝑗-th agent. Setting 𝐸𝑡 as the input to an MLP followed by a
Gumbel Softmax function, we can get an adjacency matrix 𝐺𝑡 (𝑙) ,
consisting of binary values, representing a directed graph. If the
element 𝑔𝑡 (𝑙)

𝑖 𝑗
in 𝐺𝑡 (𝑙) is 1, the 𝑗-th agent will send a message to

𝑖-th agent. Otherwise (𝑔𝑡 (𝑙)
𝑖 𝑗

= 0), the 𝑗-th agent will not send any
message to 𝑖-th agent.

4.3 The Message Processor
The Message Processor helps agents integrate messages for intel-
ligent decision making. As a black-box, it takes in the encoded
messages, {𝑚𝑡 (0)

𝑖
}𝑁1 , and the graphs generated by the Scheduler,

𝐺𝑡 (1) · · · ,𝐺𝑡 (𝐿) , and outputs the processed messages, {𝑚𝑡 (𝐿)
𝑖
}𝑁1 .

We represent the Message Processor in Equation 7.

{𝑚𝑡 (𝐿)
𝑖
}𝑁1 = 𝑓𝑀𝑃

(
𝑚
𝑡 (0)
1 , · · · ,𝑚𝑡 (0)

𝑁
,𝐺𝑡 (1) , · · · ,𝐺𝑡 (𝐿)

)
(7)

As stated in Section 4.1, the Message Processor consists of 𝐿 Sub-
Processors, each producing a set of encoded messages, {𝑚𝑡 (𝑙)

𝑖
}𝑁1 .

A Sub-Processor, for a single round of communication, includes a
GAT layer receiving messages, {𝑚𝑡 (𝑙−1)

𝑖
}𝑁1 , from all agents and the

adjacency matrix, 𝐺𝑡 (𝑙) , as input. The Sub-Processor helps agents
process received messages. The calculation of the attention coeffi-
cient in the GAT layer is shown in Equation 8.

𝛼𝑃𝑖 𝑗 =

𝑔
𝑡 (𝑙 )
𝑖 𝑗

𝑒𝑥𝑝

(
𝐿𝑅𝑒𝐿

(
(𝑎 (𝑙 )

𝑃
)⊤ [𝑊 (𝑙 )

𝑃
𝑚

𝑡 (𝑙−1)
𝑖

| |𝑊 (𝑙 )
𝑃
𝑚

𝑡 (𝑙−1)
𝑗

]
))

∑𝑁
𝑘=1 𝑔

𝑡 (𝑙 )
𝑖𝑘

𝑒𝑥𝑝

(
𝐿𝑅𝑒𝐿

(
(𝑎 (𝑙 )

𝑃
)⊤ [𝑊 (𝑙 )

𝑃
𝑚

𝑡 (𝑙−1)
𝑖

| |𝑊 (𝑙 )
𝑃
𝑚

𝑡 (𝑙−1)
𝑘

]
))
(8)

Here, 𝑙 is the round of communication, 𝑔𝑡 (𝑙)
𝑖 𝑗
∈ {0, 1} is a binary

value in the adjacency matrix, 𝐺𝑡 (𝑙) ,𝑊 (𝑙)
𝑃
∈ 𝑅𝐷′′×𝐷 is a weighting

matrix, and 𝑎 (𝑙)
𝑃
∈ 𝑅𝐷′′ is a weighting vector. It should be noted that

our graphs are capable of a self-loop, where an agent will “send"
a message to itself, and use its own message in the integration of
received messages. While the calculation of the coefficient for a
standard GAT layer is a non-differential operation for the graph,
using equation 8 allows us to retain the gradient of 𝑔𝑡 (𝑙)

𝑖 𝑗
. Thus, the

Scheduler can preserve the gradient flow for end-to-end training,
avoiding the need to design an extra loss function to train the
Scheduler. In practice, we find using multi-head attention [39] and
adding a bias to the output message to be beneficial. The output
message of sub-processor 𝑙 can be obtained via Equation 9.

𝑚
𝑡 (𝑙)
𝑖

= 𝐸𝐿𝑈
©«
𝑁∑
𝑗=1

𝛼𝑃𝑖 𝑗𝑊
𝑡 (𝑙)
𝑃

𝑚
𝑡 (𝑙−1)
𝑗

ª®¬ (9)

4.4 Training
In our experiments, the parameters of the fully-connected layers
and LSTM in the policy network are shared across homogeneous
agents to improve training efficiency. We employ a multi-threaded
synchronous multi-agent policy gradient [35] and utilize an extra
value head in the policy network to estimate the value function,
𝑉𝜙 (𝑜𝑡𝑖 ), at observation 𝑜

𝑡
𝑖
, which will serve as a state-independent

baseline. In addition to optimizing the discounted total reward
with policy gradient, the model also minimizes the squared error
between the estimated value and the Monte-Carlo estimate. The
two loss functions are balanced by a coefficient, 𝛽 . We define the
overall loss function as L(·) and the policy function denoted as
𝜋\ (𝑎𝑡𝑖 |𝑜

𝑡
𝑖
). Parameters, \ , of the policy and, 𝜙 , of the value function,

share most of their parameters except the parameters in the policy
and value heads. Our model is updated via minimizing the loss
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function displayed in Equation 1.

∇\,𝜙L(\, 𝜙) =
1

𝑡𝑚𝑎𝑥

𝑁∑
𝑖=1

𝑡𝑚𝑎𝑥∑
𝑡=1
[−∇\ log𝜋\ (𝑎𝑡𝑖 |𝑜𝑡𝑖 ) (𝑅𝑡𝑖 −𝑉𝜙 (𝑜𝑡𝑖 ))

+𝛽∇𝜙 (𝑅𝑡𝑖 −𝑉𝜙 (𝑜𝑡𝑖 ))2 ]
(10)

Here, 𝑅𝑡
𝑖
is the discounted total reward for agent 𝑖 in an episode, and

𝑡𝑚𝑎𝑥 is the number of steps taken within a batch. Different threads
in training share the parameters, \ , and 𝜙 , and calculate their own
gradients. The threads synchronously accumulate gradients and
update \ and 𝜙 within each batch. A summary of the training pro-
cedure of our multi-agent graph-attention communication model
is described in Algorithm 1. In Algorithm 1, we start by initializ-
ing the number of agents alongside several training parameters,
including threads, batch size, maximum steps in an episode, and
maximum steps in a batch, shown in Step 1. For each update per
thread, we start by initializing a set of thread parameters and a
replay buffer, 𝐷 , as displayed in Step 4. After receiving the initial
hidden state and observation for each agent (shown in Steps 7 and
8), we can utilize the Scheduler (containing 𝐿 sub-schedulers) to
output adjacency graphs, determining the communication pattern.
The Message Processor (containing 𝐿 sub-processors) can use these
graphs and the encoded messages from round zero to produce mes-
sages for each agent, as shown in Steps 13 and 14. Once each agent
has its selected message inputs, we can determine an action proba-
bility distribution from the policy and perform the action sampled
from this distribution, shown in Steps 15 and 16. Storing this infor-
mation in our replay buffer, we can then complete the episode and
proceed to compute gradients with Equation 1, as shown in Step 26.
Accumulating gradients across threads, we can update our policy
and value function, as shown in Steps 29 and 31.

5 EVALUATION ENVIRONMENTS
We utilize three domains, including the Predator-Prey [35], Traffic
Junction [37] and complex Google Research Football environment
[19], to evaluate the utility of proposed communication protocol.
Predator-Prey and Traffic Junction are common MARL benchmarks
[7, 37]. Google Research Football (GRF) presents a difficult challenge,
as it has sparse rewards, stochasticity, and adversarial agents.

5.1 Predator-Prey
We utilize the predator-prey environment from Singh et al. [35].
Here, there are 𝑁 predators with limited visions searching for a
stationary prey. The predators can take actions𝑢𝑝 ,𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡
or 𝑠𝑡𝑎𝑦. We utilize the “mixed" mode of Predator-Prey in which the
predator incurs a reward −0.05 for each time step until the prey is
found. An episode is defined as successful if all the predators find the
prey before a predefined maximum time limit. We create two levels
of difficulty in this environment. The difficulty varies as the grid
size, and the number of predators increase, as more coordination is
required to achieve success. The corresponding grid sizes and the
number of predators are set to 10 × 10 with 5 predators and 20 × 20
with 10 predators. We define a higher-performing algorithm in this
domain as one that minimizes the average steps to complete an
episode.

Algorithm 1 Training Multi-Agent Graph-attentIon Communica-
tion (MAGIC)
1: Initialize max updates𝑀 , agents 𝑁 , threads 𝐿, max steps in an episode
𝑇𝑒 , max steps in a batch𝑇𝑏

2: for update = 1 to𝑀 do 𝑑\ ← 0, 𝑑𝜙 ← 0
3: for thread 𝑘 = 1 to 𝐾 do in parallel
4: Initialize params \𝑘 ← \ , 𝜙𝑘 ← 𝜙 , buffer 𝐷 , step-count 𝑡 ← 1
5: while 𝑡 < 𝑇𝑏 do
6: Initialize thread step counter 𝑡 ′ ← 1
7: Initialize ℎ𝑡−1

𝑖
, 𝑐𝑡−1

𝑖
for each agent 𝑖

8: Reset environment and get 𝑜𝑡
𝑖
for each agent 𝑖

9: while 𝑡 ′ < 𝑇𝑒 and not terminal do
10: ℎ𝑡

𝑖
, 𝑐𝑡

𝑖
= 𝐿𝑆𝑇𝑀 (𝑒 (𝑜𝑡

𝑖
), ℎ𝑡−1

𝑖
, 𝑐𝑡−1

𝑖
) for each agent 𝑖

11: 𝑚
𝑡 (0)
𝑖

= 𝑒𝑚 (ℎ𝑡𝑖 ) for each agent 𝑖
12: {𝐺𝑡 (𝑙 ) }𝐿1 = 𝑓𝑆𝑐ℎ𝑒𝑑

(
𝑚

𝑡 (0)
1 , · · · ,𝑚𝑡 (0)

𝑁

)
13: {𝑚𝑡 (𝐿)

𝑖
}𝑁1 = 𝑓𝑀𝑃

(
𝑚

𝑡 (0)
1 , · · · ,𝑚𝑡 (0)

𝑁
,𝐺𝑡 (1) , · · · ,𝐺𝑡 (𝐿)

)
14: 𝑚𝑡

𝑖
= 𝑒′𝑚 (𝑚

𝑡 (𝐿)
𝑖
) for each agent 𝑖

15: Calculate 𝜋\𝑘 (𝑎
𝑡
𝑖
|𝑜𝑡
𝑖
) and𝑉𝜙𝑘

(𝑜𝑡
𝑖
) for each agent 𝑖

16: Perform 𝑎𝑡
𝑖
∼ 𝜋\𝑘 (𝑎

𝑡
𝑖
|𝑜𝑡
𝑖
) for each agent 𝑖

17: Receive 𝑟𝑡
𝑖
and 𝑜𝑡+1

𝑖
for each agent 𝑖

18: Store (𝑜𝑡
𝑖
, 𝑎𝑡

𝑖
, 𝜋\𝑘 (𝑎

𝑡
𝑖
|𝑜𝑡
𝑖
),𝑉𝜙𝑘

(𝑜𝑡
𝑖
), 𝑟𝑡

𝑖
, 𝑜𝑡+1

𝑖
) in 𝐷

19: 𝑡 ← 𝑡 + 1, 𝑡 ′ ← 𝑡 ′ + 1
20: end while
21: end while
22: 𝑡𝑚𝑎𝑥 ← 𝑡

23: for 𝑡 = 𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 − 1, · · · , 1 do
24: 𝑅𝑡

𝑖
= 0 if 𝑜𝑡+1

𝑖
is terminal else 𝑅𝑡

𝑖
= 𝑟𝑡

𝑖
+ 𝛾𝑅𝑡+1

𝑖
using 𝐷

25: end for
26: Calculate 𝑑\𝑘 and 𝑑𝜙𝑘 using 𝐷 with equation 10
27: end for
28: for thread 𝑘 = 1 to 𝐾 do
29: Accumulate gradients: 𝑑\ ← 𝑑\ + 𝑑\𝑘 , 𝑑𝜙 ← 𝑑𝜙 + 𝑑𝜙𝑘
30: end for
31: Perform update of \ using 𝑑\ , and of 𝜙 using 𝑑𝜙
32: end for

5.2 Traffic Junction
The second domain we utilize is the Traffic Junction environment.
This environment, composed of intersecting routes and cars (agents)
with limited vision, requires communication to avoid collisions.
Cars enter the traffic junction with a probability 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 . The maxi-
mumnumber of cars in the environment at a specific time is denoted
as 𝑁𝑚𝑎𝑥 , which varies across difficulty levels. A car occupies one
cell at a time step and can take action “gas" or “brake" on its route.

We validate our algorithm on three difficulty levels. The easy
level consists of two, one-way roads on a 7×7 grid with at most five
agents (𝑁𝑚𝑎𝑥 = 5, 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.3). For the medium level, the junction
consists of two, two-way roads on a 14 × 14 grid with at most ten
agents in the domain (𝑁𝑚𝑎𝑥 = 10, 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.2). Hard consists of
four, two-way roads on a 18 × 18 grid with at most twenty agents
in the domain (𝑁𝑚𝑎𝑥 = 20, 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.05). The goal is to maximize
the success rate (i.e., no collisions within an episode).

5.3 Google Research Football
Our final domain of Google Research Football [19] presents a chal-
lenging, mixed cooperative-competitive, multi-agent scenario with
high stochasticity and sparse rewards. Google Research Football
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(a) Low difficulty Predator-Prey Environment with size 10 × 10 and 5 agents (b) High difficulty Predator-Prey Environment with size 20 × 20, 10 agents

Figure 3: This figure displays the average steps taken to finish an episode as training proceeds in each level of the Predator-Prey
environment. The shaded regions represent standard error. A lower value for steps taken on the vertical axis is better.

(GRF) is a physics-based 3D soccer simulator for reinforcement
learning. This last domain presents an additional challenge as there
are opponent artificial agents (AIs), significantly increasing the
complexity of the state-action space. GRF provides 19 actions in-
cluding moving actions, kicking actions, and other actions such
as dribbling, sliding and sprint. GRF provides several pre-defined
reward signals, consisting of a scoring and a penalty box proxim-
ity reward. The penalty box proximity reward is shaped to push
attackers to move forward towards certain locations. Many MARL
frameworks have required these highly shaped rewards functions
to perform well [19]. However, we choose to use only the scoring
reward to verify the ability for our algorithm and baselines to func-
tion in a high-complexity stochastic domain with sparse rewards.
Accordingly, the only reward all agents will receive in our
evaluation is +1when scoring a goal. The termination criterion
is the team scoring, ball out of bounds, or possession change. We
evaluate algorithms in the football academy scenario 3 vs. 2, where
we have 3 attackers vs. 1 defender, and 1 goalie. The three offending
agents are controlled by the MARL algorithm, and the two defend-
ing agents are controlled by a built-in AI. We find that utilizing a
3 vs. 2 scenario challenges the robustness of MARL algorithms to
stochasticity and sparse rewards. In this domain, we seek to maxi-
mize the average success rate (i.e., a goal is scored) and minimize
the average steps taken to complete an episode, thereby scoring a
goal in the shortest amount of time. We show in section 6.3 that
our method outperforms all prior state-of-the-art baselines.

6 RESULTS AND DISCUSSION
In this section, we evaluate the performance of our proposedmethod
on three environments, including Predator-Prey [35], Traffic Junc-
tion [37], and Google Research Football [19]. We benchmark our
approach against a variety of state-of-the-art communication-based
MARL baselines, including CommNet [37], IC3Net [35], GA-Comm
[22], and TarMAC-IC3Net [7]. We implement our method and base-
lines on each task, averaging the best performance at convergence
over 5 random seeds. Following an analysis of performance, we
evaluate MAGIC’s communication efficiency, concluding MAGIC
presents a new state-of-the-art in both performance and efficiency
in MARL. We provide additional details within the supplementary.

6.1 Predator-Prey
Figure 3 depicts the average steps taken for the predators to locate
the prey. In both the five- and ten-agent cases, our method con-
verges faster and can achieve better performance than the baselines.

Table 1: This table presents the number of steps taken to
complete an episode at convergence in Predator-Prey.

Method 10 × 10, 5 agents 20 × 20, 10 agents
MAGIC (Our Approach) 12.72 ± 0.03 32.88 ± 0.14
CommNet [37] 13.16 ± 0.04 73.12 ± 0.68
IC3Net [35] 15.60 ± 0.35 55.13 ± 4.80
TarMAC-IC3Net [7] 13.32 ± 0.11 36.16 ± 0.97
GA-Comm [22] 13.06 ± 0.09 35.78 ± 0.37

Our method converges 52% faster than the next-quickest baseline
while still achieving the highest performance. Figure 3 shows that
as the number of agents increases, some baselines (CommNet and
IC3Net) are unable to learn a coherent policy. Table 1 shows the re-
sults of average steps taken to reach the prey at convergence. While
approaches such as GA-Comm and TarMAC-IC3Net learn compet-
itive policies for the five agent case, these benchmarks perform
much worse than our algorithm in the ten agent case, suggesting a
lack of scalability.

(a) Before prey found. (b) After prey found.

Figure 4: Heatmaps of the communication graphs learned
by the Scheduler in the Predator-Prey domain.

Predator-Prey Communication Heatmaps - Figure 4 depicts
communication heatmaps in Predator-Prey domain with 10 agents
in an episode of 31 steps. The color is associated with the probability
of communication, with darker colors representing more intensive
communication between the two agents. The vertical axis repre-
sents message receivers, and the horizontal axis represents message
senders. Agent 5 first reaches the prey at step 23, and the other 9
agents quickly reach the prey in the following 7 steps. Figure 4(a)
displays the communication before the first agent (agent 5) reaches
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Figure 5: This figure displays the average number of epochs
for convergence in Traffic Junctionwith standard error bars.

Table 2: This table presents the success rate at convergence
in Traffic Junction.

Method 7 × 7, 14 × 14, 18 × 18,
𝑁𝑚𝑎𝑥 = 5, 𝑁𝑚𝑎𝑥 = 10, 𝑁𝑚𝑎𝑥 = 20,
𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.3 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.2 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.05

MAGIC (Our Approach) 99.9 ± 0.1 % 99.9 ± 0.1 % 98.0 ± 0.8 %
CommNet [37] 99.3 ± 0.6% 97.2 ± 0.3% 66.7 ± 1.6%
IC3Net [35] 97.8 ± 1.0% 96.0 ± 0.7% 85.4 ± 2.5%
TarMAC-IC3Net [7] 84.8 ± 4.5% 95.5 ± 1.3% 88.1 ± 1.9%
GA-Comm [22] 95.9 ± 0.1% 97.1 ± 0.7% 95.8 ± 1.1%

its prey and 4(b) displays the communication afterwards. We can
see that agents communicate with each other intensively before
finding the prey. After finding the prey, communication becomes
unnecessary, and the learned communication graphs should be
sparse, which is the behavior we see in Figure 4(b). This inspection
supports that MAGIC learns to communicate only when beneficial
to team performance.

6.2 Traffic Junction
We evaluate our method in the Traffic Junction domain for the
cases of a maximum of 5 agents, 10 agents and 20 agents at a
junction. Table 2 shows the success rate (i.e., no collision in an
episode) for each method at convergence in Traffic Junction. Our
algorithm achieves near-perfect performance after convergence,
widely outperforming all benchmarks in its success rate. Figure 5
depicts the average number of epochs taken to converges for each
method. Our method maintains quick convergence as the number
of agents increase. However, several of the benchmarks experience
a slowdown in their convergence rate.
Impact of the Message Processor - In Traffic Junction, we al-
low all agents to communicate to accelerate training for all meth-
ods, common in highly vision-limited environments [35]. As we
are using complete graphs (i.e., Scheduler is not used), our SOTA
performance in the Traffic Junction domain displays that the MP
considerably contributes to the success of our algorithm.

6.3 Google Research Football
Lastly, we evaluate our algorithm and several state-of-the-art MARL
baselines in the GRF environment. The results presented provide
some insight into each algorithm’s ability to handle stochasticity,

Figure 6: This figure displays the success rate inGRF as train-
ing proceeds. As shown, our method achieves the highest
performance, acheiving near-perfect success at scoring.

Table 3: This table displays the success rate and average steps
taken to finish an episode in GRF.

Method Success Rate Steps Taken

MAGIC (Our Approach) 98.2 ± 1.0% 34.30 ± 1.34
Ours (without the Scheduler) 91.0 ± 4.6% 36.31 ± 2.59
CommNet [37] 59.2 ± 13.7% 39.32 ± 2.35
IC3Net [35] 70.0 ± 9.8% 40.37 ± 1.22
TarMAC-IC3Net [7] 73.5 ± 8.3% 41.53 ± 2.80
GA-Comm [22] 88.8 ± 3.9% 39.05 ± 3.05

sparse rewards, and a high-complexity state-action space.We utilize
the scoring success rate as our metric of evaluation.

Impact of the Scheduler - We verify the impact of the Sched-
uler mechanism in MAGIC by testing our method without the use
of the Scheduler. As seen, the addition of a Scheduler provides a
performance improvement. This result signifies the importance of
determining “when" and “whom" to communicate with.

Figure 6 displays the success rate for offending agents to score as
the training proceeds. Ourmethod converges to a higher-performing
policy than all the baselines. While utilizing the Scheduler may
adversely affect early performance, it leads to a significant improve-
ment in the performance of our method. In our settings, although
each agent only has local observations, it is able to completely
observe the state space. MAGIC without the ability to utilize a
scheduler performs poorly. It is interesting to note that even with
unlimited vision, utilizing a complete graph for communication
performs much worse than utilizing a scheduler that gives pre-
cise and targeted communication. Table 3 displays the success rate
and average steps taken to finish an episode at convergence. Our
method has a success rate of 98.5%, which is approximately a 10.5%
improvement over the next-best baseline of GA-Comm. Further-
more, our method has approximately a 8x lower average variance
than others at convergence. Even though we do not have rewards or
time penalties on finishing an episode, and the discount factor is set
to 1, we find our learned policy can still score within a short time.
Our method achieves the lowest number of average steps, scoring
13.8% more quickly than the closest benchmark of GA-Comm. As
we have have outperformed all benchmarks within the previous
two domains and in the complex GRF environment, we conclude
that our method of “Multi-Agent Graph-attentIon Communication"
(MAGIC) is high-performing, scales well to the number of agents,
robust to stochasticity, and performs well with sparse rewards.
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6.4 Communication Efficiency
We present an analysis of the communication efficiency of our
method in Table 4. Communicating efficiently can save resources
and allow for messages to be processed more easily. To gauge
the efficiency, we utilize the performance improvement due to
communication and divide the communication graph density. The
results here are averaged over 3 random seeds. The graph densities
are determined using the sparsity of the adjacency matrix. A fully-
connected graph corresponds to a density of 1, and a graph with no
connections corresponds to a density of 0. We perform this analysis
within a Predator-Prey domain of grid size 5𝑥5 with 3 predators,
where a performance improvement refers to a reduction in steps.
To obtain the performance improvement due to communication,
we evaluate a communication-blocked variant of each method and
compare the performance to the method itself. All methods use
the same message size and one round of communication, as some
baselines do not support multi-round communication. Utilizing
the performance improvement due to communication divided by
the graph density as our metric for communication efficiency, we
see that MAGIC is the most efficient. MAGIC communicates 27.4%
more efficiently on average than baselines while also achieving
the highest performance within this domain. Alongside achieving
state-of-the-art performance, we are able to most efficiently send
and receive messages, displaying the strength of our method.

Table 4: Communication efficiency measured as the perfor-
mance improvement with communication divided by graph
density.

Method Graph Avg. Steps Performance Improvement
DensityDensity w/ Comms Improvement

MAGIC (Our Approach) 0.644 8.504 7.562 11.743
CommNet [37] 0.667 9.216 6.455 9.681
IC3Net [35] 0.638 9.208 6.421 10.058
TarMAC-IC3Net[7] 0.856 9.376 5.958 6.956
GA-Comm [22] 0.514 9.334 5.868 11.391

Impact of the combined framework of MAGIC - As we com-
pare each method to its non-communicatory variant, in MAGIC,
this results in removing the Scheduler and Message Processor. Com-
paring the variants, MAGIC achieves the greatest performance im-
provement compared to other baselines, displaying the contribution
from the combined effects of the Scheduler and Message Processor.

6.5 Discussion
Across multiple test domains, we set a new state-of-the-art inMARL
performance, outperforming baselines, including [7, 22, 35, 37].
Across our domains, we achieve an average 5.8% improvement in
steps taken (Predator-Prey), average 1.9% improvement in success
rate (Traffic Junction), 10.5% improvement in success rate (GRF),
and 13.8% improvement in steps taken compared to the closest
benchmark which varies across each domain. The strong perfor-
mance improvement we achieve in GRF suggests our approach is
better able to scale to high-dimension state-action spaces while
effectively handling stochasticity and sparse rewards. While our ar-
chitecture shares some attributes as GA-Comm [22], GA-Comm has
several drawbacks including large epoch training times due to its
bi-directional LSTM in its hard attention mechanism, a dot-product

soft attentionmechanismwithout scaling, and the inability to extend
to multi-round communication. Our approach takes significantly
less compute by avoiding any recurrent structures in the Scheduler.
Specifically, GA-Comm requires 2x long to train with 3 agents, 3x
long with 5 agents, and 4x as long with 10 agents. Prior work [4] has
also shown that additive attention (used in the GAT layers in our
Message Processor (MP)) outperforms dot-product attention with-
out scaling when the message size is large. MAGIC’s Scheduler can
explicitly learn and generate different graphs for different rounds
of communication, allowing for higher performance. Additionally,
MAGIC achieves the highest ratio of performance improvement
to communication graph density, outperforming benchmarks by
27.4% on average.

7 PHYSICAL ROBOT DEMONSTRATION
We present a demonstration of our algorithm in a similar 3-vs.-2
soccer scenario on physical robots in the Robotarium, a remotely
accessible swarm robotics research platform Pickem et al. [28]. This
demonstration displays the feasibility of trajectories produced by
our MARL algorithm. We present a depiction of MAGIC’s deployed
trajectory in Figure 7. A video is attached in the supplementary.

Figure 7: This figure displays a demonstration of our algo-
rithm on physical robots on the Robotarium platform. The
display shows a 3 vs. 2 soccer scenario, with blue agents as
the attackers, and red agents as defenders.

8 CONCLUSION
In this paper, we propose a novel, end-to-end-trainable, graph-
attention communication protocol, MAGIC, that utilizes a Sched-
uler to solve the problems of when to communicate and whom
to address messages to, and a Message Processor to integrate and
process messages. We evaluate our method and baselines in several
environments, including Predator-Prey, Traffic Junction, and the
more complex Google Research Football, achieving state-of-the-art
performance. In GRF, we achieve a 98.5%, near-perfect success rate
in scoring, while most baselines struggle to reach 70%. Not only
does MAGIC produce state-of-the-art results, MAGIC is able to con-
verge 52% faster than the next-quickest baseline, and communicates
27.4% more efficiently than the average baseline. We demonstrate
feasibility of MAGIC on a physical robot testbed.
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1 ADDITIONAL ENVIRONMENT
INFORMATION

Here, we present additional information about each domain used
to benchmark MAGIC against baseline algorithms.

1.1 Predator-Prey

Figure 1: The visualization of the 10-agent Predator-Prey
task. The predators (in red) with limited visions (light red re-
gion) of size 1 are searching for a randomly initialized fixed
prey (in blue).

We utilize the predator-prey environment from Singh et al. [2].
Here, there are 𝑁 predators with limited visions searching for a
stationary prey. A predator or a prey occupies a single cell within
the grid world at any time, and its location is initialized randomly
at the start of each episode. The state at each point in the grid is the
concatenation of a one-hot vector which represents its own location
and binary values indicating the presence of predator and prey at
this point. The observation of each agent is a concatenated array of
the states of all points within the agent’s vision. The predators can
take actions 𝑢𝑝 , 𝑑𝑜𝑤𝑛, 𝑙𝑒 𝑓 𝑡 , 𝑟𝑖𝑔ℎ𝑡 or 𝑠𝑡𝑎𝑦. We utilize the ‘mixed’
mode of Predator-Prey in which the predator incurs a reward −0.05
for each time step until the prey is found. An episode is defined
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as successful if all the predators find the prey before a predefined
maximum time limit. We test two levels of difficulty in this envi-
ronment. The difficulty varies as the grid size, and the number of
predators increases, as more coordination is required to achieve
success. The corresponding grid sizes and the number of predators
are set to 10×10with 5 predators and 20×20with 10 predators. The
10-agent task is shown in Figure 1. We set the maximum steps for
an episode (i.e., termination condition) to be 40 and 80, respectively.
The vision is set to a unit length. We define a higher-performing
algorithm in this domain as one that minimizes the average steps
to complete an episode.

1.2 Traffic Junction

Figure 2: The visualization of the hard level Traffic Junc-
tion task. This task consists of four, two-way roads on a
18 × 18 grid with eight arrival points, each with seven dif-
ferent routes. Each agent is with a limited vision of size 1.

The second domainwe utilize is the Traffic Junction environment.
This environment, composed of intersecting routes and cars (agents)
with limited vision, requires communication to avoid collisions.
Cars enter the traffic junction from all entry points at each time
step with a probability 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 , and are randomly assigned a route
at the start. The maximum number of cars in the environment at
a specific time is denoted by 𝑁𝑚𝑎𝑥 , which varies across difficulty
levels. A car occupies one cell at a time step and can take action “gas"
or “brake" on its route. The state of each cell is the concatenation
of a one-hot vector representing its location, and a value indicating
the number of cars in this cell. The observation of each car is the
concatenation of its previous action, route identifier, and all states
of the cells within its vision. Two cars collide if they are in the same
location, resulting in a reward of −10 for each car. The simulation
terminates once all agents reach the end of its route or if the time



Figure 3: The visualization of 3 vs. 2 inGoogleResearch Foot-
ball. The five people shown in this figure are three offending
players, one defending player and the goalie (left to right).

surpasses the predefined timeout parameter. Collisions will not
incur “death" of agents or terminate the simulation. The agents
will only be “dead" when it reaches the end of its route. There is
a time penalty −0.01𝜏 at each time step, where 𝜏 is the number of
time steps that have passed since the agent’s entry. An episode is
considered successful if there are no collisions within the episode.

We validate our algorithm on three difficulty levels. The easy
level consists of two, one-way roads on a 7 × 7 grid. There are two
arrival points and two possible routes for each arrival point, and
there are at most five agents (𝑁𝑚𝑎𝑥 = 5, 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.3). For the
medium level, the junction consists of two, two-way roads on a
14×14 grid with four arrival points, each with three different routes.
Here, there are at most ten agents (𝑁𝑚𝑎𝑥 = 10, 𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.2).
The hard level, as shown in Figure 2, consists of four, two-way
roads on a 18 × 18 grid with eight arrival points, each with seven
different routes, and there are at most twenty agents (𝑁𝑚𝑎𝑥 = 20,
𝑝𝑎𝑟𝑟𝑖𝑣𝑒 = 0.05). The goal is to maximize the average success rate
(i.e., no collisions within an episode). We set the limited vision
parameter to 1 for both levels. Similar to [2], in Traffic Junction,
we fix the gating action to be 1 for IC3Net and TarMAC-IC3Net,
set all the hard attention outputs in GA-Comm to be 1, and set
all the graphs used by the Message Processor in our method to be
complete.

1.3 Google Research Football
Our final domain of Google Research Football [1] presents a chal-
lenging, mixed cooperative-competitive, multi-agent scenario with
high stochasticity and sparse rewards. Google Research Football
(GRF) is a physics-based 3D soccer simulator for reinforcement
learning. This last domain presents an additional challenge as there
are opponent artificial agents (AIs), significantly increasing the
complexity of the state-action space. We present a depiction of this
environment in Figure 3. To align with the partially observable
setting, we extract the local observations from the provided global
observations. The local observations include the relative positions
of the players on both teams, the relative position of the ball, and
one-hot encoding vectors which represent the ball-owned team and
the game mode. GRF provides 19 actions including moving actions,
kicking actions, and other actions such as dribbling, sliding and
sprint. GRF provides several pre-defined reward signals, consisting
of a scoring and a penalty box proximity reward. The penalty box
proximity reward is shaped to push attackers to move forward

towards certain locations. Many MARL frameworks have required
these highly shaped rewards functions to perform well [1]. How-
ever, we choose to use only the scoring reward to verify the ability
of our algorithm and baselines to function in a high-complexity sto-
chastic domain with sparse rewards. Accordingly, the only reward
all agents will receive in our evaluation is +1 when scoring a goal.
The termination criterion is the team scoring, ball out of bounds, or
possession change. We evaluate algorithms in the football academy
scenario 3 vs. 2, as shown in Figure 3, where we have 3 attackers
vs. 1 defender, and 1 goalie. The three offending agents are con-
trolled by the MARL algorithm, and the two defending agents are
controlled by a built-in AI. We find that utilizing a 3 vs. 2 scenario
challenges the robustness of MARL algorithms to stochasticity and
sparse rewards. In this domain, we seek to maximize the average
success rate (i.e., a goal is scored) and minimize the average steps
taken to complete an episode, thereby scoring a goal in the shortest
amount of time.

2 ADDITIONAL TRAINING DETAILS
We distribute the training over 16 threads and each thread runs
batch learning with a batch size of 500. The threads share the
parameters of the policy network and update synchronously. There
are 10 updates in one epoch. We use RMSProp with a learning
rate of 0.001 in all the domains except Predator-Prey ten-agent
scenario where we use 0.0003. The value coefficient 𝛽 and discount
factor _ are set to 0.01 and 1 respectively. The size of each agent’s
hidden state for LSTM is 128. The sizes of original encodedmessages
and the final messages for decision making are 128. 2/3 layers of
GNNs have been used in practice and shown to work well [3].
Empirically, we find that two rounds of communication achieve
the best performance with comparable training speeds to simpler
methods such as CommNet and IC3Net. As such, we use two rounds
of communication to test the performance of our method in all
domains, and the number of heads for the first GAT layer (sub-
processor 1) is set to be 4, 4, 1 in Predator-Prey, Traffic Junction and
GRF respectively, and the number of heads for the output GAT layer
(sub-processor 2) is set to be 1.We use one-round communication for
efficiency evaluation for fair comparison, and the number of heads
for the GAT layer is 1. The output size of the GAT encoder in the
Scheduler is set to 32. We implement our method and baselines on
each task over 5 random seeds and average the results. We provide
our code at https://github.com/CORE-Robotics-Lab/MAGIC.
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