
MAGIC: Multi-Agent Graph-Attention Communication

Yaru Niu*, Rohan Paleja*, and Matthew Gombolay
Georgia Institute of Technology

Atlanta, GA
yaruniu@gatech.edu, rpaleja3@gatech.edu, matthew.gombolay@cc.gatech.edu

Abstract

High-performing teams learn effective communication
strategies to judiciously share information and reduce the
cost of communication overhead. Within multi-agent rein-
forcement learning, synthesizing effective policies requires
reasoning about when to communicate, whom to communi-
cate with, and how to process messages. We propose a novel
multi-agent reinforcement learning algorithm, Multi-Agent
Graph-attentIon Communication (MAGIC), with a graph-
attention communication protocol in which we learn 1) a
Scheduler to help with the problems of when to commu-
nicate and whom to address messages to, and 2) a Mes-
sage Processor using Graph Attention Networks (GATs)
with dynamic graphs to deal with communication signals.
The Scheduler consists of a graph attention encoder and
a differentiable attention mechanism, which outputs dy-
namic, differentiable graphs to the Message Processor,
which enables the Scheduler and Message Processor to
be trained end-to-end. We evaluate our approach on a
variety of cooperative tasks, including Google Research
Football. Our method outperforms baselines across all
domains, achieving ≈ 10.5% increase in reward in the
most challenging domain. We also show MAGIC com-
municates 27.4% more efficiently on average than base-
lines, is robust to stochasticity, and scales to larger state-
action spaces. Finally, we demonstrate MAGIC on a phys-
ical, multi-robot testbed. We release our codebase at
https://github.com/CORE-Robotics-Lab/MAGIC.

1. Introduction
Communication is a key component of successful co-

ordination, enabling the agents to convey information and
cooperate to collectively achieve shared goals [26, 30]. In
high-performing human teams, human experts judiciously
choose when to communicate and whom to communicate
with, communicating only when beneficial [6, 37, 29]. Each
team member exhibits the role of a communicator and mes-
sage receiver, relaying information to the right teammates

and incorporating received information effectively.
There has been recent success in MARL for Multi-

player Online Battle Arena (MOBA) games such as Star-
Craft II and Dota II [39, 3, 2]. MARL seeks to enable
agents to share information to improve team performance
[34, 36, 8, 7, 27, 40]. However, most prior work in MARL
fails to capture the complex relations among agents, leading
to low-performance and inefficient communication. While
[34] and [17] are able to efficiently decide when to broad-
cast messages, agents will broadcast these messages to all
other agents without targets, resulting in wasteful commu-
nication. Even with targeted communication [7], failure to
assess when to communicate results in poor performance,
as we display in Section 6. However, determining when
to communicate and whom to communicate with is not
enough. Selectively utilizing received messages can signifi-
cantly improve performance. Yet, none of these methods si-
multaneously address “when" and with “whom", and “how"
to communicate while modeling agent interaction topology.

In this paper, we propose Multi-Agent Graph-attentIon
Communication (MAGIC), a novel graph communication
protocol that determines “when" and “whom" with to com-
municate via an end-to-end framework. We set a new state-
of-the-art in communication-based multi-agent reinforce-
ment learning by modeling the topology of interactions
among agents (the local and global characterization of con-
nections between agents [1]) as a dynamic directed graph
that accommodates time-varying communication needs and
captures the relations between agents. Our proposed frame-
work emulates the features of an effective human-human
team through its key components, 1) the Scheduler, which
helps each agent to decide when it should communicate and
whom it should communicate with, and 2) the Message Pro-
cessor, which integrates and processes received messages
in preparation for decision making. We find MAGIC pro-
duces high-performance, cooperative behavior through its
efficient communication protocol.

Our Scheduler consists of a graph attention encoder and
a differentiable hard attention mechanism to decide when to
communicate and whom to communicate with. This infor-

https://github.com/CORE-Robotics-Lab/MAGIC

mation is encoded within a directed graph, allowing us to
represent the interaction among agents precisely. The Mes-
sage Processor consisting of a Graph Attention Network
(GAT), utilizes received messages and the directed graph
to intelligently and efficiently process messages. The en-
coded messages are then used in each agent’s policy, lead-
ing to high-performance cooperation and efficient commu-
nication, as shown in Section 6. We provide the following
contributions:

1. Develop a novel graph-attention communication pro-
tocol for MARL that utilizes 1) a Scheduler to solve
the problems of when to communicate and whom to
address messages to, and 2) a Message Processor us-
ing GATs with dynamic directed graphs to integrate
and process messages.

2. Enable GATs in the Message Processor to maintain
gradients from graph-based operations, which is not
supported by standard GATs. In this way, the frame-
work is fully differentiable and can be trained in an
end-to-end manner.

3. Outperform prior methods across three domains, in-
cluding the Google Research Football environment,
achieving a 10.5% increase in reward. Further,
MAGIC learns to communicate 27.4% more efficiently
than the average baseline. These results set a new
state-of-the-art in communication-based MARL.

4. Demonstrate our algorithm on physical robots in a 3-
vs.-2 soccer scenario on a physical, multi-robot testbed
(Section 2 in the supplementary).

2. Related Work
Coordinating multi-agent teams is a challenging compu-

tational problem [10, 12, 11, 18, 32, 35]. In multi-agent
settings, each agent observes other agents as part of the en-
vironment, causing the environment to appear dynamic and
non-stationary. Further difficulty arises due to the issue of
credit assignment, where it is difficult for each agent to de-
duce its own contribution to the team’s success (especially
when there are only global rewards). To solve these multi-
agent challenges, many researchers in MARL [5] have pur-
sued centralized training and decentralized execution. Fur-
ther extensions allow agents to exchange messages during
execution, allowing for increased performance. Here, we
present recent work in MARL.
MARL with Centralized Critic – Some works extend vari-
ants of actor-critic algorithms to multi-agent settings and
learn decentralized policy through centralized critics with-
out explicit communication channels [23, 9, 13]. MAD-
DPG [23] is a MARL framework based on Deep Deter-
ministic Policy Gradient, and can be applied in both co-
operative and competitive scenarios. COMA [9] extends
on-policy actor-critic and proposes a counterfactual base-
line to address the credit assignment problem. While these

works present critical improvements in the field of MARL,
the ability to communicate and process information allows
for much-increased performance. As we show in Section
6.4, the ability to communicate results in a 88.9% perfor-
mance gain for our method.

MARL with Communication – Recent works have en-
abled agents to communicate and exchange messages dur-
ing execution. Differentiable Inter-Agent Learning (DIAL)
[8] builds up limited-bandwidth differentiable discrete com-
munication channels among agents. CommNet [36] extends
to a continuous communication protocol designed for fully
cooperative tasks. Agents receive averaged encoded hid-
den states from other agents and use the messages to make
decisions. However, utilizing a sum or average of mes-
sages results in some information loss. IC3Net [34] uses
a gating mechanism to enable the agents to decide when
to communicate, and thus is amenable to competitive sce-
narios. However, both IC3Net and CommNet process mes-
sages with a simple average. The proper integration of
these messages is critically important for communication,
as displayed by the performance of our results in Section
6. TarMAC [7] achieves targeted communication with a
signature-based soft-attention mechanism. The integrated
signal for each agent is the weighted mean of values gen-
erated by all agents. IMAC [40] uses a scheduler to ag-
gregate compact messages through reweighting all agents’
messages, and achieves the state-of-the-art performance on
multi-agent communication under limited bandwidth. Tar-
MAC and IMAC do not explicitly consider “when" and
“whom" or the topology of agent interactions, which can
help save communication resources and process messages
efficiently. ATOC [16], employs an attention mechanism
to decide if an agent should communicate in its observable
field. SchedNet [17] proposes a weight-based scheduler to
pick agents who should broadcast their messages. How-
ever, both ATOC and SchedNet have to manually config-
ure their communication groups. Our communication pro-
tocol intelligently decides when and with whom to commu-
nicate through a graph-attention based Scheduler resulting
in a large performance gain (≈ 38% average increase in re-
ward in our most difficult domain) compared to prior work.

MARL using Graph Neural Networks Graph Neural Net-
works (GNNs) are powerful tools for learning from data
with graph structures [31, 41, 42, 43]. To model the in-
teractions between agents, MARL has utilized GNNs to al-
low for a graph-based representation [33, 15, 24, 20]. DGN
[15] represents the multi-agent environment as a graph and
employ multi-head dot-production attention as the convolu-
tional kernel to extract relational features between agents.
MAGNet [24] learns multi-agent policies in the Pommer-
man game by utilizing a relevance graph and message pass-
ing mechanism. The graphs are static and constructed based
on heuristic rules. [33] learns a hierarchical topology of

the communication structure dynamically by electing cen-
tral agents. HAMA [28] designs a hierarchical graph at-
tention network to model the hierarchical relationships be-
tween agents in both cooperative and competitive scenar-
ios. G2ANet [22] combines a hard-attention and a soft at-
tention mechanism to dynamically learns interactions be-
tween agents. In this work, we modify standard graph
attention networks to be compatible with a differentiable
directed graph, allowing us to represent the interactions
among agents more accurately during communication.

We improve upon prior frameworks by utilizing a Sched-
uler to solve the problems of when to communicate and
whom to address messages to, and a Message Processor
using GATs with dynamic directed graphs to integrate and
process messages. In this way, we achieve efficient and
targeted message sending and high-performance message
comprehension.

3. Preliminaries
3.1. Partially Observable Markov Game

A Markov Game [21] is the multi-agent version of
Markov Decision Process (MDP). We are primarily con-
cerned with a partially observable Markov game. A par-
tially observable Markov game (POMG) for N agents can
be defined by a set of global states, S, a set of private ob-
servations for each agent, O1, O2, . . . , ON , a set of actions
for each agent,A1, A2, . . . , AN , and the transition function,
T : S × A1 × . . . × AN 7→ S. In each time step, agent i
chooses action, ai ∈ Ai, obtains reward as a function of
state, S, and its action ri : S × Ai 7→ R, and receives a
local observation oi : S 7→ Oi. The initial state is defined
by a initial state distribution ρ. Agent i aims to maximize
its discounted reward Ri =

∑T
t=0 γ

trti , where γ ∈ [0, 1] is
a discounted factor. Our work is based on the framework of
POMG augmented with communication.

3.2. Reinforcement Learning: Policy Gradients
The Policy Gradient method (Equation 1) is widely used

in reinforcement learning (RL) tasks to perform gradient as-
cent on the agent policy parameters, θ, to optimize the to-
tal discounted reward, J(θ) = Es∼pπ,a∼πθ [R]. ρπ is the
state distribution, πθ is the policy distribution, and Rt =∑T
t′=t γ

t′−tr(st′ , at′).

∇θJ(θ) = Es∼ρπ,a∼πθ
[T∑
t=1

∇θ log πθ(at|st)Rt
]

(1)

In lieu of Rt, we use the advantage function, Aπ(st, at) =
Rt−V (st), to decrease the variance of the estimated policy
gradient, where V (st) is the value function.

3.3. Graph Neural Networks
In Graph Neural Networks (GNNs), each GNN layer

computes the node representation by message passing,

where each node aggregates the feature vectors from its
neighboring nodes in the graph at the previous layer. The
update rule for node representations by a GNN layer is dis-
played in Equation 2.

h
(l)
i = σ

∑
j∈Ni

1√
didj

(h
(l−1)
j W (l))

 (2)

Here, h(l)i represents the features of node i, at layer l. Ni
is the set of neighboring nodes of node i, di = |Ni| is the
degree of node i, W (l) is a learnable weighting matrix for
layer l, and σ(·) is a nonlinear activation function. In this
paper, we enable our GATs within the Message Processor to
function with differentiable graphs (Section 4.3), allowing
for end-to-end training.

Figure 1. This figure displays the framework of our multi-agent
graph-attention communication protocol.

4. Method
In this section, we introduce our proposed Multi-Agent

Graph-attentIon Communication protocol, MAGIC. We
consider a partially observable setting of N agents, where
agent i receives local observation, oti, at time, t, contain-
ing local information from the global state, S. The agent, i,
learns a communication-based policy, πi, to output a distri-
bution over actions, a(t)i ∼ πi, at each time step, t. Here,
we present an overview of our framework, the description
of our protocol’s key components (i.e., the Scheduler and
Message Processor), and our training procedure.

4.1. Overview

Our proposed graph-attention communication protocol is
displayed in Figure 1. At time step, t, the observation for
each agent, oti, is first encoded using an agent-specific fully-
connected layer (FC). The encoded observation is passed

into an agent-specific LSTM cell to generate a hidden state,
hti, as shown in Equation 3.

hti, c
t
i = LSTM(e(oti), h

t−1
i , ct−1

i) (3)

In this equation, cti is the cell state for agent, i, at time step,
t, and e(·) is a fully-connected layer acting as an encoder
for the observation. The hidden state, hti, is then encoded as
a message, mt(0)

i = em(hti), through the encoder, em(·) (a
fully-connected layer). Here, the exponent notation for the
message, mt(0)

i , denotes that message is for agent i, and is
prior to any message aggregation or processing. We refer
to this stage, where the message has not been processed, as
round 0, giving the exponent notation, t(0).

As shown in Figure 1, we define the function module to
help agents decide whom to send messages at each time step
as the “Scheduler" and define the function module to pro-
cess messages as “Message Processor." The Scheduler and
the Message Processor may include multiple sub-schedulers
and sub-processors, respectively. Prior work has termed the
procedure of processing messages for multiple iterations as
multi-round communication [7]. As multi-round commu-
nication has been shown to improve performance, our pro-
tocol supports L rounds of communication, where L ∈ N.
A round of communication, l, is defined as a forward pass
through a sub-scheduler and sub-processor. As shown in
Figure 1, the encoded messages, mt(0)

i are passed into Sub-
Scheduler 1 and Sub-Processor 1 (i.e., the sub-scheduler
and sub-processor at round 1).

The Sub-Scheduler l (at round, l ∈ L) will output an ad-
jacency matrix,Gt(l). Gt(l) is a directed graph that indicates
the targeted receivers for each agent at time step, t. Gt(l) is
utilized by the Sub-Processor, l, to produce a set of inte-
grated messages, {mt(l)

i }N1 , where mt(l)
i is the integrated

message for agent, i, at time step, t. The integrated mes-
sages for each agent, i, can be incorporated into agent i’s
policy (in the case where we are on the last round of com-
munication, l = L) or be further processed by more rounds
of communication (l < L). If the messages are to be fur-
ther processed, the set of messages outputted from round l,
{mt(l)

i }N1 , are passed into the Sub-Scheduler l + 1 and the
Sub-Processor l + 1, producing adjacency matrix Gt(l+1)

and messages {mt(l+1)
i }N1 respectively.

The message outputted from the Message Processor,
m
t(L)
i , for agent, i, is encoded through a fully-connected

layer, e′m(·), to produce an intelligently integrated message,
mt
i = e′m(m

t(L)
i). mt

i is concatenated with the hidden state,
hti, to produce the input feature to the policy head and the
value head. The policy head is a fully-connected layer fol-
lowed by a softmax function. We sample the action for the
i-th agent at time step, t, from the policy output distribution:
ati ∼ πi(a

t
i|oti). The value head is a single fully-connected

layer and serves as a baseline function.

Figure 2. This figure displays the details and components of the
Scheduler.

4.2. The Scheduler

The Scheduler decides when each agent should send
messages and whom each agent should address messages to,
as shown in Figure 2. As a black-box, the Scheduler takes as
input the encoded messages, {mt(0)

i }N1 , and outputs the di-
rected graphs, {Gt(l)}L1 , as represented in fSched(·) shown
in Equation 4.

{Gt(l)}L1 = fSched
(
m
t(0)
1 , · · · ,mt(0)

N

)
(4)

As noted in Section 4.1, the Scheduler consists of L Sub-
Schedulers, each producing an adjacency matrix Gt(l). A
Sub-Scheduler consists of a GAT encoder and a hard atten-
tion mechanism that uses a multi-layer perceptron (MLP)
and a Gumbel Softmax function [14]. The GAT encoder
helps encode local or global information for an agent effi-
ciently, and it is only used in the first Sub-Scheduler. We
adopt the same form of GATs as proposed in [38], where
the attention mechanism is expressed in Equation 5.

αSij =
exp

(
LReL

(
aTS [WSm

t(0)
i ||WSm

t(0)
j]

))
∑
k∈Nti∪i

exp
(
LReL

(
aTS [WSm

t(0)
i ||WSm

t(0)
k]

))
(5)

Here, LReL(·) is the LeakyReLU [25], aS ∈ RD
′

is a
weighting vector, N t

i ∪ i is the set of neighboring agents
for the i-th agent, including agent i, at time step, t, and
WS ∈ RD

′×D is a weighting matrix, where D′ and D re-
fer to the output feature cardinality and message cardinality,
respectively. The node features of each agent are obtained
through Equation 6.

eti = ELU

 ∑
j∈Nti∪i

αSijWSm
t(0)
j

 (6)

Here, ELU(·) is the Exponential Linear Unit (ELU) func-
tion. After concatenating the node feature vectors pair-
wise, supposing Eti,j = (eti||etj), we obtain a matrix Et ∈
RN×N×2D, where Eti,j represents a high-level representa-
tion of relational features between the i-th and j-th agent.
Setting Et as the input to an MLP followed by a Gumbel
Softmax function, we can get an adjacency matrix Gt(l),
consisting of binary values, representing a directed graph.
If the element gt(l)ij in Gt(l) is 1, the j-th agent will send a

message to i-th agent. Otherwise (gt(l)ij = 0), the j-th agent
will not send any message to i-th agent.

4.3. The Message Processor
The Message Processor helps agents integrate messages

for intelligent decision making. As a black-box, it takes in
the encoded messages, {mt(0)

i }N1 , and the graphs generated
by the Scheduler,Gt(1) · · · , Gt(L), and outputs the processed
messages, {mt(L)

i }N1 . We represent the Message Processor
in Equation 7.

{mt(L)
i }N1 = fMP

(
m
t(0)
1 , · · · ,mt(0)

N , Gt(1), · · · , Gt(L)
)

(7)

As stated in Section 4.1, the Message Processor consists of
L Sub-Processors, each producing a set of encoded mes-
sages, {mt(l)

i }
N
1 . A Sub-Processor, for a single round of

communication, includes a designed GAT layer receiving
messages, {mt(l−1)

i }N1 , from all agents and the adjacency
matrix, Gt(l), as input, as shown in Figure 1 in the supple-
mentary. The Sub-Processor helps agents process received
messages. In Equation 8, we display the calculation of
the attention coefficient in our designed GAT layer, which
maintains the gradient from the Scheduler.

αPij =

g
t(l)
ij exp

(
LReL

(
(a

(l)
P)>[W

(l)
P m

t(l−1)
i ||W (l)

P m
t(l−1)
j]

))
∑N
k=1 g

t(l)
ik exp

(
LReL

(
(a

(l)
P)>[W

(l)
P m

t(l−1)
i ||W (l)

P m
t(l−1)
k]

))
(8)

Here, l is the round of communication, gt(l)ij ∈ {0, 1}is a bi-
nary value in the adjacency matrix, Gt(l), W (l)

P ∈ RD
′′×Dis

a weighting matrix, and a(l)P ∈ R
D′′ is a weighting vector. It

should be noted that our graphs are capable of a self-loop,
where an agent will “send" a message to itself, and use its
own message in the integration of received messages. While
the calculation of the coefficient for a standard GAT layer is
a non-differentiable operation for the graph, using equation
8 allows us to retain the gradient of gt(l)ij . Thus, the Sched-
uler can preserve the gradient flow for end-to-end training,
avoiding the need to design an extra loss function to train the
Scheduler. In practice, we find using multi-head attention
[38] and adding a bias to the output message to be benefi-
cial. The output message of sub-processor l can be obtained
via Equation 9.

m
t(l)
i = ELU

(
N∑
j=1

αPijW
(l)
P m

t(l−1)
j

)
(9)

4.4. Training
In our experiments, the parameters of the fully-

connected layers and LSTM in the policy network are
shared across homogeneous agents to improve training ef-
ficiency. We employ a multi-threaded synchronous multi-
agent policy gradient [34] and utilize an extra value head in
the policy network to estimate the value function, Vφ(oti),
at observation oti, which will serve as a state-independent
baseline. In addition to optimizing the discounted total re-
ward with policy gradient, the model also minimizes the

squared error between the estimated value and the Monte-
Carlo estimate. The two loss functions are balanced by a
coefficient, β. We define the overall loss function as L(·)
and the policy function denoted as πθ(ati|oti). Parameters,
θ, of the policy and, φ, of the value function, share most
of their parameters except the parameters in the policy and
value heads. Our model is updated via minimizing the loss
function displayed in Equation 10.

∇θ,φL(θ, φ) =
1

tmax

N∑
i=1

tmax∑
t=1

[−∇θ log πθ(ati|oti)(Rti − Vφ(oti))

+β∇φ(Rti − Vφ(oti))2]
(10)

Here, Rti is the discounted total reward for agent i in an
episode, and tmax is the number of steps taken within a
batch. Different threads in training share the parameters, θ,
and φ, and calculate their own gradients. The threads syn-
chronously accumulate gradients and update θ and φ within
each batch. A summary of the training procedure of our
multi-agent graph-attention communication model and the
algorithm is described in Section 1 of the supplementary.

5. Evaluation Environments
We utilize three domains, including the Predator-Prey

[34], Traffic Junction [36] and complex Google Research
Football environment [19], to evaluate the utility of pro-
posed communication protocol. Predator-Prey and Traffic
Junction are common MARL benchmarks [36, 7]. Google
Research Football (GRF) presents a difficult challenge, as it
has sparse rewards, stochasticity, and adversarial agents.

5.1. Predator-Prey

We utilize the predator-prey environment from [34].
Here, there are N predators with limited visions searching
for a stationary prey. The predators can take actions up,
down, left, right or stay. We utilize the “mixed" mode of
Predator-Prey in which the predator incurs a reward −0.05
for each time step until the prey is found. An episode is de-
fined as successful if all the predators find the prey before
a predefined maximum time limit. We create two levels of
difficulty in this environment. The difficulty varies as the
grid size, and the number of predators increase, as more co-
ordination is required to achieve success. The correspond-
ing grid sizes and the number of predators are set to 10×10
with 5 predators and 20 × 20 with 10 predators. We define
a higher-performing algorithm in this domain as one that
minimizes the average steps to complete an episode.

5.2. Traffic Junction

The Traffic Junction environment, composed of inter-
secting routes and cars (agents) with limited vision, requires
communication to avoid collisions. Cars enter the traffic
junction with a probability parrive. The maximum number

(a) Low difficulty Predator-Prey Environment with size 10 × 10
and 5 agents

(b) High difficulty Predator-Prey Environment with size 20 × 20,
10 agents

Figure 3. This figure displays the average steps taken to finish an episode as training proceeds in each level of the Predator-Prey environ-
ment. The shaded regions represent standard error. A lower value for steps taken on the vertical axis is better.

of cars in the environment at a specific time is denoted as
Nmax, which varies across difficulty levels. A car occupies
one cell at a time step and can take action “gas" or “brake"
on its route.

We validate our algorithm on three difficulty levels. The
easy level consists of two, one-way roads on a 7 × 7 grid
with at most five agents (Nmax = 5, parrive = 0.3). For the
medium, the junction consists of two, two-way roads on a
14×14 grid with at most ten agents in the domain (Nmax =
10, parrive = 0.2). Hard consists of four, two-way roads on
a 18 × 18 grid with at most twenty agents in the domain
(Nmax = 20, parrive = 0.05). The success rate (i.e., no
collisions within an episode) is used in our evaluation.

5.3. Google Research Football

Our final domain of Google Research Football [19]
presents a challenging, mixed cooperative-competitive,
multi-agent scenario with high stochasticity and sparse re-
wards. Google Research Football (GRF) is a physics-based
3D soccer simulator for reinforcement learning. This last
domain presents an additional challenge as there are oppo-
nent artificial agents (AIs), significantly increasing the com-
plexity of the state-action space. GRF provides 19 actions
including moving actions, kicking actions, and other actions
such as dribbling, sliding and sprint. GRF provides several
pre-defined reward signals, consisting of a scoring and a
penalty box proximity reward. The penalty box proximity
reward is shaped to push attackers to move forward towards
certain locations. Many MARL frameworks have required
these highly shaped rewards functions to perform well [19].
However, we choose to use only the scoring reward to ver-
ify the ability for our algorithm and baselines to function in
a high-complexity stochastic domain with sparse rewards.
Accordingly, the only reward all agents will receive in
our evaluation is +1 when scoring a goal. The termina-
tion criterion is the team scoring, ball out of bounds, or pos-
session change. We evaluate algorithms in a standard sce-
nario 3 vs. 2 from Football Academy [19], where we have 3
attackers vs. 1 defender, and 1 goalie. The three offending
agents are controlled by the MARL algorithm, and the two
defending agents are controlled by a built-in AI. We find

that utilizing a 3 vs. 2 scenario challenges the robustness of
MARL algorithms to stochasticity and sparse rewards. In
this domain, we seek to maximize the average success rate
(i.e., a goal is scored) and minimize the average steps taken
to complete an episode, thereby scoring a goal in the short-
est amount of time. We show in section 6.3 that our method
outperforms all prior state-of-the-art baselines.

6. Results and Discussion
In this section, we evaluate the performance of our pro-

posed method on three environments, including Predator-
Prey [34], Traffic Junction [36], and Google Research Foot-
ball [19]. We benchmark our approach against a variety
of state-of-the-art communication-based MARL baselines,
including CommNet [36], IC3Net [34], GA-Comm [22],
and TarMAC-IC3Net [7]. We implement our method and
baselines on each task, averaging the best performance at
convergence over 5 random seeds. Following an analysis
of performance, we evaluate MAGIC’s communication ef-
ficiency, concluding MAGIC presents a new state-of-the-art
in both performance and efficiency in communication-based
MARL. We provide additional training details within Sec-
tion 4 of the supplementary.

6.1. Predator-Prey

Figure 3 depicts the average steps taken for the predators
to locate the prey. In both the five- and ten-agent cases, our

Table 1. The number of steps taken to complete an episode at con-
vergence in Predator-Prey.

Method 10× 10, 5 agents 20× 20, 10 agents

MAGIC (Our Approach) 12.72± 0.03 32.88± 0.14
CommNet [36] 13.16± 0.04 73.12± 0.68
IC3Net [34] 15.60± 0.35 55.13± 4.80
TarMAC-IC3Net [7] 13.32± 0.11 36.16± 0.97
GA-Comm [22] 13.06± 0.09 35.78± 0.37

method converges faster and can achieve better performance
than the baselines. Our method converges 52% faster than
the next-quickest baseline while still achieving the highest
performance. Table 1 shows the results of average steps
taken to reach the prey at convergence. While approaches

Table 2. The success rate at convergence in Traffic Junction.
Method 7× 7, 14× 14, 18× 18,

Nmax = 5, Nmax = 10, Nmax = 20,
parrive = 0.3 parrive = 0.2 parrive = 0.05

MAGIC (Our Approach) 99.9 ± 0.1 % 99.9 ± 0.1 % 98.0 ± 0.8 %
CommNet [36] 99.3 ± 0.6% 97.2 ± 0.3% 66.7 ± 1.6%
IC3Net [34] 97.8 ± 1.0% 96.0 ± 0.7% 85.4 ± 2.5%
TarMAC-IC3Net [7] 84.8 ± 4.5% 95.5 ± 1.3% 88.1 ± 1.9%
GA-Comm [22] 95.9 ± 0.1% 97.1 ± 0.7% 95.8 ± 1.1%

such as GA-Comm and TarMAC-IC3Net learn competitive
policies for the five agent case, these benchmarks perform
much worse than our algorithm in the ten agent case, sug-
gesting a lack of scalability.

(a) Before prey found. (b) After prey found.

Figure 4. Heatmaps of the communication graphs learned by the
Scheduler in the Predator-Prey domain.

Predator-Prey Communication Heatmaps - Figure 4 de-
picts communication heatmaps in Predator-Prey domain
with 10 agents in an episode of 31 steps. The color is asso-
ciated with the probability of communication, with darker
colors representing more intensive communication between
the two agents. The vertical axis represents message re-
ceivers, and the horizontal axis represents message senders.
Agent 5 first reaches the prey at step 23, and the other 9
agents quickly reach the prey in the following 7 steps. Fig-
ure 4(a) displays the communication before the first agent
(agent 5) reaches its prey and 4(b) displays the communica-
tion afterwards. We can see that agents communicate with
each other intensively before finding the prey. After find-
ing the prey, communication becomes unnecessary, and the
learned communication graphs should be sparse, as we see
in Figure 4(b). This inspection supports that MAGIC learns
to communicate only when beneficial to team performance.

6.2. Traffic Junction

We evaluate our method in the Traffic Junction domain
for the cases of a maximum of 5 agents, 10 agents and 20
agents at a junction. Table 2 shows the success rate (i.e.,
no collision in an episode) for each method at convergence
in Traffic Junction. Our algorithm achieves near-perfect
performance after convergence, widely outperforming all
benchmarks in its success rate. Figure 5 depicts the aver-
age number of epochs taken to converges for each method.
Our method maintains quick convergence as the number of

Figure 5. The average number of epochs for convergence in Traffic
Junction with standard error bars.

Table 3. The success rate and average steps taken to finish an
episode in GRF.

Method Success Rate Steps Taken

MAGIC (Our Approach) 98.2± 1.0% 34.30± 1.34
Ours (without the Scheduler) 91.0± 4.6% 36.31± 2.59
CommNet [36] 59.2± 13.7% 39.32± 2.35
IC3Net [34] 70.0± 9.8% 40.37± 1.22
TarMAC-IC3Net [7] 73.5± 8.3% 41.53± 2.80
GA-Comm [22] 88.8± 3.9% 39.05± 3.05

agents increase. However, several of the benchmarks expe-
rience a slowdown in their convergence rate.
Impact of the Message Processor - In Traffic Junction, we
allow all agents to communicate to accelerate training for
all methods, common in highly vision-limited environments
[34]. As we are using complete graphs (i.e., Scheduler is
not used), our SOTA performance in the Traffic Junction
domain displays that the MP considerably contributes to the
success of our algorithm.

6.3. Google Research Football

Figure 6. The success rate in GRF as training proceeds.

Lastly, we evaluate our algorithm and several state-of-
the-art communication-based MARL baselines in the GRF
environment. The results presented provide some insight
into each algorithm’s ability to handle stochasticity, sparse
rewards, and a high-complexity state-action space. We uti-
lize the scoring success rate as our metric of evaluation.

Impact of the Scheduler - We verify the impact of the
Scheduler mechanism in MAGIC by testing our method
without the use of the Scheduler. As seen, the addition
of a Scheduler provides a performance improvement. This

result signifies the importance of determining “when" and
“whom" to communicate with.

Figure 6 displays the success rate for offending agents
to score as the training proceeds. Our method converges
to a higher-performing policy than all the baselines. In our
settings, although each agent only has local observations,
it is able to completely observe the state space. MAGIC
without the ability to utilize a scheduler performs poorly. It
is interesting to note that even with unlimited vision, uti-
lizing a complete graph for communication performs much
worse than utilizing a scheduler that gives precise and tar-
geted communication. Table 3 displays the success rate
and average steps taken to finish an episode at convergence.
Our method has a success rate of 98.5%, which is approx-
imately a 10.5% improvement over the next-best baseline
of GA-Comm. Our method achieves the lowest number of
average steps, scoring 13.8% more quickly than the closest
benchmark of GA-Comm. As we have have outperformed
all benchmarks within the previous two domains and in the
complex GRF environment, we conclude that MAGIC is
high-performing, scales well to the number of agents, ro-
bust to stochasticity, and performs well with sparse rewards.

6.4. Communication Efficiency
We present an analysis of the communication efficiency

of our method in Table 4. Communicating efficiently can
save resources and allow for messages to be processed more
easily. To gauge the efficiency, we utilize the performance
improvement due to communication and divide the com-
munication graph density. The graph densities are deter-
mined using the sparsity of the adjacency matrix. A fully-
connected graph corresponds to a density of 1, and a graph
with no connections corresponds to a density of 0. We per-
form this analysis within a Predator-Prey domain of grid
size 5x5 with 3 predators, where a performance improve-
ment refers to a reduction in steps. To obtain the perfor-
mance improvement due to communication, we evaluate a
communication-blocked variant of each method and com-
pare the performance to the method itself. All methods use
the same message size and one-round of communication to
maintain a similar network complexity. Utilizing the perfor-
mance improvement due to communication divided by the
graph density as our metric for communication efficiency,
we see that MAGIC is the most efficient. MAGIC commu-
nicates 27.4% more efficiently on average than baselines
while also achieving the highest performance.

Impact of the combined framework of MAGIC - As we
compare each method to its non-communicatory variant, in
MAGIC, this results in removing the Scheduler and Mes-
sage Processor. MAGIC achieves the greatest improvement
compared to baselines, displaying the contribution from the
combined effects of the Scheduler and Message Processor.

Table 4. Communication efficiency measured as the performance
improvement with communication divided by graph density.

Method Graph Avg. Steps Performance Improvement
DensityDensity w/ Comms Improvement

MAGIC (Our Approach) 0.644 8.504 7.562 11.743
CommNet [36] 0.667 9.216 6.455 9.681
IC3Net [34] 0.638 9.208 6.421 10.058
TarMAC-IC3Net[7] 0.856 9.376 5.958 6.956
GA-Comm [22] 0.514 9.334 5.868 11.391

6.5. Discussion
Across multiple test domains, we set a new state-of-the-

art in communication-based MARL performance, outper-
forming baselines, including [36, 34, 22, 7]. Across our do-
mains, we achieve an average 5.8% improvement in steps
taken (Predator-Prey), average 1.9% improvement in suc-
cess rate (Traffic Junction), 10.5% improvement in success
rate (GRF), and 13.8% improvement in steps taken com-
pared to the closest benchmark across each domain. The
strong performance improvement we achieve in GRF sug-
gests our approach is better able to scale to high-dimension
state-action spaces while effectively handling stochasticity
and sparse rewards. While our architecture shares some at-
tributes as GA-Comm [22], GA-Comm has several draw-
backs including large epoch training times due to the com-
plex hard attention structure, a dot-product soft attention
mechanism without scaling, and the inability to extend to
multi-round communication. Our approach takes signifi-
cantly less compute by avoiding any recurrent structures in
the Scheduler. Specifically, GA-Comm requires 2x long to
train with 3 agents, 3x long with 5 agents, and 4x as long
with 10 agents. Prior work [4] has also shown that additive
attention (used in the GAT layers in our Message Processor)
outperforms dot-product attention without scaling when the
message size is large. MAGIC’s Scheduler can explicitly
learn and generate different graphs for different rounds of
communication, allowing for higher performance. Addi-
tionally, MAGIC achieves the highest communication ef-
ficiency, outperforming benchmarks by 27.4% on average.

7. Conclusion
In this paper, we propose a novel, end-to-end-trainable,

graph-attention communication protocol, MAGIC, that uti-
lizes a Scheduler to solve the problems of when to com-
municate and whom to address messages to, and a Mes-
sage Processor to integrate and process messages. We eval-
uate our method and baselines in several environments,
achieving state-of-the-art performance. In GRF, we achieve
a 98.5%, near-perfect success rate, while most baselines
struggle to reach 70%. Not only does MAGIC produce
SOTA results, MAGIC is able to converge 52% faster than
the next-quickest baseline, and communicates 27.4% more
efficiently than the average baseline.

References
[1] Dhaval Adjodah, Dan Calacci, Abhimanyu Dubey, Anirudh

Goyal, Peter Krafft, Esteban Moro, and Alex Pentland. Com-
munication topologies between learning agents in deep rein-
forcement learning. arXiv preprint arXiv:1902.06740, 2019.

[2] In-Chang Baek and Kyung-Joong Kim. Efficient multi-agent
reinforcement learning using clustering for many agents.
2019.

[3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemysław Dębiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

[4] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc
Le. Massive exploration of neural machine translation archi-
tectures. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages 1442–
1451, Copenhagen, Denmark, Sept. 2017. Association for
Computational Linguistics.

[5] L. Busoniu, R. Babuka, and B. D. Schutter. A comprehensive
survey of multiagent reinforcement learning. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews), 38:156–172, 2008.

[6] N. Cooke, J. Gorman, Christopher W. Myers, and J. Duran.
Interactive team cognition. Cognitive science, 37 2:255–85,
2013.

[7] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv
Batra, Devi Parikh, Mike Rabbat, and Joelle Pineau. Tar-
mac: Targeted multi-agent communication. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research,
pages 1538–1546. PMLR, 2019.

[8] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas,
and Shimon Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon,
and Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural In-
formation Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2137–2145, 2016.

[9] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras,
Nantas Nardelli, and Shimon Whiteson. Counterfactual
multi-agent policy gradients. In Sheila A. McIlraith and Kil-
ian Q. Weinberger, editors, Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 2974–2982. AAAI Press,
2018.

[10] M. Gombolay, Anna Bair, Cindy Huang, and J. Shah. Com-
putational design of mixed-initiative human–robot teaming
that considers human factors: situational awareness, work-
load, and workflow preferences. The International Journal
of Robotics Research, 36:597 – 617, 2017.

[11] M. Gombolay, R. Jensen, Jessica Stigile, T. Golen, N. Shah,
Sung-Hyun Son, and J. Shah. Human-machine collabo-
rative optimization via apprenticeship scheduling. ArXiv,
abs/1805.04220, 2018.

[12] M. Gombolay, R. Wilcox, and J. Shah. Fast scheduling
of robot teams performing tasks with temporospatial con-
straints. IEEE Transactions on Robotics, 34:220–239, 2018.

[13] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-
agent reinforcement learning. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 2961–
2970. PMLR, 2019.

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017.

[15] Jiechuan Jiang, Chen Dun, and Zongqing Lu. Graph convo-
lutional reinforcement learning for multi-agent cooperation.
arXiv preprint arXiv:1810.09202, 2(3), 2018.

[16] Jiechuan Jiang and Zongqing Lu. Learning attentional com-
munication for multi-agent cooperation. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada,
pages 7265–7275, 2018.

[17] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju
Kang, Taeyoung Lee, Kyunghwan Son, and Yung Yi. Learn-
ing to schedule communication in multi-agent reinforcement
learning. In 7th International Conference on Learning Rep-
resentations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

[18] Dong-Ki Kim, Miao Liu, M. Riemer, Chuangchuang Sun,
Marwa Abdulhai, G. Habibi, Sebastian Lopez-Cot, G.
Tesauro, and Jonathon P. How. A policy gradient algorithm
for learning to learn in multiagent reinforcement learning.
ArXiv, abs/2011.00382, 2020.

[19] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac,
Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien
Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain
Gelly. Google research football: A novel reinforcement
learning environment. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 4501–4510.
AAAI Press, 2020.

[20] Sheng Li, J. Gupta, Peter Morales, R. Allen, and M. Kochen-
derfer. Deep implicit coordination graphs for multi-agent re-
inforcement learning. ArXiv, abs/2006.11438, 2020.

[21] Michael L Littman. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning proceed-
ings 1994, pages 157–163. Elsevier, 1994.

[22] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xing-
guo Chen, and Yang Gao. Multi-agent game abstraction
via graph attention neural network. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 7211–
7218. AAAI Press, 2020.

[23] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel,
and Igor Mordatch. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages
6379–6390, 2017.

[24] Aleksandra Malysheva, Tegg Taekyong Sung, Chae-Bong
Sohn, Daniel Kudenko, and Aleksei Shpilman. Deep multi-
agent reinforcement learning with relevance graphs. arXiv
preprint arXiv:1811.12557, 2018.

[25] Chigozie Nwankpa, W. Ijomah, A. Gachagan, and S. Mar-
shall. Activation functions: Comparison of trends in prac-
tice and research for deep learning. ArXiv, abs/1811.03378,
2018.

[26] Afshin Oroojlooyjadid and Davood Hajinezhad. A review of
cooperative multi-agent deep reinforcement learning. ArXiv,
abs/1908.03963, 2019.

[27] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan,
Zhenkun Tang, Haitao Long, and Jun Wang. Multiagent
bidirectionally-coordinated nets: Emergence of human-level
coordination in learning to play starcraft combat games.
arXiv preprint arXiv:1703.10069, 2017.

[28] Heechang Ryu, Hayong Shin, and Jinkyoo Park. Multi-agent
actor-critic with hierarchical graph attention network. arXiv
preprint arXiv:1909.12557, 2019.

[29] E. Salas, N. Cooke, and M. Rosen. On teams, teamwork,
and team performance: Discoveries and developments. Hu-
man Factors: The Journal of Human Factors and Ergonomic
Society, 50:540 – 547, 2008.

[30] E. Salas, T. Dickinson, Sharolyn A. Converse, and S. Tan-
nenbaum. Toward an understanding of team performance
and training. 1992.

[31] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-
genbuchner, and Gabriele Monfardini. The graph neural
network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2008.

[32] Esmaeil Seraj and M. Gombolay. Coordinated control of
uavs for human-centered active sensing of wildfires. 2020
American Control Conference (ACC), pages 1845–1852,
2020.

[33] Junjie Sheng, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenhao
Li, Tsung-Hui Chang, Jun Wang, and Hongyuan Zha. Learn-
ing structured communication for multi-agent reinforcement
learning. arXiv preprint arXiv:2002.04235, 2020.

[34] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar.
Learning when to communicate at scale in multiagent co-

operative and competitive tasks. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[35] Laura G. Strickland, Charles E. Pippin, and Matthew Gom-
bolay. Learning to Steer Swarm-vs.-swarm Engagements.

[36] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus.
Learning multiagent communication with backpropagation.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain, pages 2244–2252,
2016.

[37] Güliz Tokadli and Michael C. Dorneich. Interac-
tion paradigms: from human-human teaming to human-
autonomy teaming. 2019 IEEE/AIAA 38th Digital Avionics
Systems Conference (DASC), pages 1–8, 2019.

[38] Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph at-
tention networks. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

[39] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354,
2019.

[40] Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and
Zinovi Rabinovich. Learning efficient multi-agent commu-
nication: An information bottleneck approach. In Proceed-
ings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pages 9908–
9918. PMLR, 2020.

[41] Zheyuan Wang and M. Gombolay. Heterogeneous graph
attention networks for scalable multi-robot scheduling with
temporospatial constraints. In RSS 2020, 2020.

[42] Zheyuan Wang and M. Gombolay. Learning scheduling poli-
cies for multi-robot coordination with graph attention net-
works. IEEE Robotics and Automation Letters, 5:4509–
4516, 2020.

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, G. Long, C.
Zhang, and P. Yu. A comprehensive survey on graph neural
networks. IEEE transactions on neural networks and learn-
ing systems, 2020.

Supplementary for MAGIC: Multi-Agent Graph-Attention Communication

Figure 1. This figure displays the detailed structure of a Sub-
Processor.

1. The Algorithm of MAGIC

In Algorithm 1, we start by initializing the number
of agents alongside several training parameters, including
threads, batch size, maximum steps in an episode, and max-
imum steps in a batch, shown in Step 1. For each update
per thread, we start by initializing a set of thread parameters
and a replay buffer, D, as displayed in Step 4. After receiv-
ing the initial hidden state and observation for each agent
(shown in Steps 7 and 8), we can utilize the Scheduler (con-
tainingL sub-schedulers) to output adjacency graphs, deter-
mining the communication pattern. The Message Processor
(containing L sub-processors) can use these graphs and the
encoded messages from round zero to produce messages for
each agent, as shown in Steps 13 and 14. Once each agent
has its selected message inputs, we can determine an action
probability distribution from the policy and perform the ac-
tion sampled from this distribution, shown in Steps 15 and
16. Storing this information in our replay buffer, we can
then complete the episode and proceed to compute gradi-
ents with Equation 10, as shown in Step 26. Accumulating
gradients across threads, we can update our policy and value
function, as shown in Steps 29 and 31.

Algorithm 1 Training Multi-Agent Graph-attentIon Com-
munication (MAGIC)
1: Initialize max updates M , agents N , threads L, max steps in an

episode Te, max steps in a batch Tb
2: for update = 1 to M do dθ ← 0, dφ← 0
3: for thread k = 1 to K do in parallel
4: Initialize params θk ← θ, φk ← φ, buffer D, step-count t← 1
5: while t < Tb do
6: Initialize thread step counter t′ ← 1
7: Initialize ht−1

i , ct−1
i for each agent i

8: Reset environment and get oti for each agent i
9: while t′ < Te and not terminal do

10: hti, c
t
i = LSTM(e(oti), h

t−1
i , ct−1

i) for each agent i

11: m
t(0)
i = em(hti) for each agent i

12: {Gt(l)}L1 = fSched

(
m
t(0)
1 , · · · ,mt(0)N

)
13: {mt(L)

i }N1 = fMP

(
m
t(0)
1 , · · · ,mt(0)N , Gt(1), · · · , Gt(L)

)
14: mti = e′m(m

t(L)
i) for each agent i

15: Calculate πθk (a
t
i|oti) and Vφk

(oti) for each agent i
16: Perform ati ∼ πθk (a

t
i|oti) for each agent i

17: Receive rti and ot+1
i for each agent i

18: Store (oti, a
t
i, πθk (a

t
i|oti), Vφk

(oti), r
t
i , o

t+1
i) in D

19: t← t+ 1, t′ ← t′ + 1
20: end while
21: end while
22: tmax ← t
23: for t = tmax, tmax − 1, · · · , 1 do
24: Rti = 0 if ot+1

i is terminal else Rti = rti + γRt+1
i using D

25: end for
26: Calculate dθk and dφk using D with equation 10
27: end for
28: for thread k = 1 to K do
29: Accumulate gradients: dθ ← dθ + dθk , dφ← dφ+ dφk
30: end for
31: Perform update of θ using dθ, and of φ using dφ
32: end for

2. Physical Robot Demonstration

We present a demonstration of our algorithm in a similar
3-vs.-2 soccer scenario on physical robots in the Robotar-
ium, a remotely accessible swarm robotics research plat-
form [2]. This demonstration displays the feasibility of tra-
jectories produced by our MARL algorithm. We present a
depiction of MAGIC’s deployed trajectory in Figure 2. A
video is attached in this link.

https://drive.google.com/file/d/1nSZfTj_KfDWwML6211FE39ZJ-iGcs7RR/view?usp=sharing

Figure 2. This figure displays a demonstration of our algorithm on
physical robots on the Robotarium platform. The display shows a
3 vs. 2 soccer scenario, with blue agents as the attackers, and red
agents as defenders.

3. Additional Environment Information
Here, we present additional information about each do-

main used to benchmark MAGIC against baseline algo-
rithms.

3.1. Predator-Prey

Figure 3. The visualization of the 10-agent Predator-Prey task. The
predators (in red) with limited visions (light red region) of size 1
are searching for a randomly initialized fixed prey (in blue).

We utilize the predator-prey environment from [3]. Here,
there are N predators with limited visions searching for a
stationary prey. A predator or a prey occupies a single cell
within the grid world at any time, and its location is ini-
tialized randomly at the start of each episode. The state
at each point in the grid is the concatenation of a one-hot
vector which represents its own location and binary values
indicating the presence of predator and prey at this point.
The observation of each agent is a concatenated array of the
states of all points within the agent’s vision. The predators
can take actions up, down, left, right or stay. We utilize
the ‘mixed’ mode of Predator-Prey in which the predator
incurs a reward −0.05 for each time step until the prey is

found. An episode is defined as successful if all the preda-
tors find the prey before a predefined maximum time limit.
We test two levels of difficulty in this environment. The
difficulty varies as the grid size, and the number of preda-
tors increases, as more coordination is required to achieve
success. The corresponding grid sizes and the number of
predators are set to 10 × 10 with 5 predators and 20 × 20
with 10 predators. The 10-agent task is shown in Figure 3.
We set the maximum steps for an episode (i.e., termination
condition) to be 40 and 80, respectively. The vision is set
to a unit length. We define a higher-performing algorithm
in this domain as one that minimizes the average steps to
complete an episode.

3.2. Traffic Junction

Figure 4. The visualization of the hard level Traffic Junction task.
This task consists of four, two-way roads on a 18 × 18 grid with
eight arrival points, each with seven different routes. Each agent
is with a limited vision of size 1.

The second domain we utilize is the Traffic Junction
environment. This environment, composed of intersecting
routes and cars (agents) with limited vision, requires com-
munication to avoid collisions. Cars enter the traffic junc-
tion from all entry points at each time step with a probability
parrive, and are randomly assigned a route at the start. The
maximum number of cars in the environment at a specific
time is denoted byNmax, which varies across difficulty lev-
els. A car occupies one cell at a time step and can take ac-
tion “gas" or “brake" on its route. The state of each cell is
the concatenation of a one-hot vector representing its loca-
tion, and a value indicating the number of cars in this cell.
The observation of each car is the concatenation of its previ-
ous action, route identifier, and all states of the cells within
its vision. Two cars collide if they are in the same location,
resulting in a reward of −10 for each car. The simulation
terminates once all agents reach the end of its route or if the
time surpasses the predefined timeout parameter. Collisions
will not incur “death" of agents or terminate the simulation.
The agents will only be “dead" when it reaches the end of

Figure 5. The visualization of 3 vs. 2 in Google Research Football.
The five people shown in this figure are three offending players,
one defending player and the goalie (left to right).

its route. There is a time penalty −0.01τ at each time step,
where τ is the number of time steps that have passed since
the agent’s entry. An episode is considered successful if
there are no collisions within the episode.

We validate our algorithm on three difficulty levels. The
easy level consists of two, one-way roads on a 7 × 7 grid.
There are two arrival points and two possible routes for
each arrival point, and at most five agents (Nmax = 5,
parrive = 0.3). For the medium level, the junction con-
sists of two, two-way roads on a 14 × 14 grid with four
arrival points, each with three different routes. Here, there
are at most ten agents (Nmax = 10, parrive = 0.2). The
hard level, as shown in Figure 4, consists of four, two-way
roads on a 18× 18 grid with eight arrival points, each with
seven different routes, and there are at most twenty agents
(Nmax = 20, parrive = 0.05). The average success rate
(i.e., no collisions within an episode) is used in our eval-
uation. We set the limited vision parameter to 1 for both
levels. Similar to [3], in Traffic Junction, we fix the gating
action to be 1 for IC3Net and TarMAC-IC3Net, set all the
hard attention outputs in GA-Comm to be 1, and set all the
graphs used by the Message Processor in our method to be
complete.

3.3. Google Research Football

Our final domain of Google Research Football [1]
presents a challenging, mixed cooperative-competitive,
multi-agent scenario with high stochasticity and sparse re-
wards. Google Research Football (GRF) is a physics-based
3D soccer simulator for reinforcement learning. This do-
main presents an additional challenge as there are opponent
artificial agents (AIs), significantly increasing the complex-
ity of the state-action space. We present a depiction of this
environment in Figure 5. To align with the partially ob-
servable setting, we extract the local observations from the
provided global observations. The local observations in-
clude the relative positions of the players on both teams, the
relative position of the ball, and one-hot encoding vectors
which represent the ball-owned team and the game mode.
GRF provides 19 actions including moving actions, kick-
ing actions, and other actions such as dribbling, sliding and

sprint. GRF provides several pre-defined reward signals,
consisting of a scoring and a penalty box proximity reward.
The penalty box proximity reward is shaped to push at-
tackers to move forward towards certain locations. Many
MARL frameworks have required these highly shaped re-
wards functions to perform well [1]. However, we choose
to use only the scoring reward to verify the ability of our
algorithm and baselines to function in a high-complexity
stochastic domain with sparse rewards. Accordingly, the
only reward all agents will receive in our evaluation is +1
when scoring a goal. The termination criterion is the team
scoring, ball out of bounds, or possession change. We eval-
uate algorithms in a standard scenario 3 vs. 2 from Football
Academy [1], as shown in Figure 5, where we have 3 at-
tackers vs. 1 defender, and 1 goalie. The three offending
agents are controlled by the MARL algorithm, and the two
defending agents are controlled by a built-in AI. We find
that utilizing a 3 vs. 2 scenario challenges the robustness
of MARL algorithms to stochasticity and sparse rewards.
In this domain, we seek to maximize the average success
rate (i.e., a goal is scored) and minimize the average steps
taken to complete an episode, thereby scoring a goal in the
shortest amount of time.

4. Additional Training Details

We distribute the training over 16 threads and each
thread runs batch learning with a batch size of 500. The
threads share the parameters of the policy network and up-
date synchronously. There are 10 updates in one epoch.
We use RMSProp with a learning rate of 0.001 in all the
domains except Predator-Prey ten-agent scenario where we
use 0.0003. The value coefficient β and discount factor λ
are set to 0.01 and 1 respectively. The size of each agent’s
hidden state for LSTM is 128. The sizes of original en-
coded messages and the final messages for decision making
are 128. 2 or 3 layers of GNNs have been used in prac-
tice and shown to work well [4]. Empirically, we find that
two rounds of communication achieve the best performance
with comparable training speeds to simpler methods such
as CommNet and IC3Net. As such, we use two rounds of
communication to test the performance of our method in all
domains, and the number of heads for the first GAT layer
(sub-processor 1) is set to be 4, 4, 1 in Predator-Prey, Traf-
fic Junction and GRF respectively, and the number of heads
for the output GAT layer (sub-processor 2) is set to be 1. We
use one-round communication for efficiency evaluation for
fair comparison, and the number of heads for the GAT layer
is 1. The output size of the GAT encoder in the Scheduler is
set to 32. We implement our method and baselines on each
task over 5 random seeds and average the results.

References
[1] Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac,

Olivier Bachem, Lasse Espeholt, Carlos Riquelme, Damien
Vincent, Marcin Michalski, Olivier Bousquet, and Sylvain
Gelly. Google research football: A novel reinforcement learn-
ing environment. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Inno-
vative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 4501–4510. AAAI Press, 2020.
3

[2] Daniel Pickem, E. Squires, and M. Egerstedt. The robotarium
: An open , remote-access , multi-robot laboratory. 2016. 1

[3] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar.
Learning when to communicate at scale in multiagent cooper-
ative and competitive tasks. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. 2, 3

[4] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Liò, and Yoshua Bengio. Graph atten-
tion networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. 3

	MAGIC_Submission_to_Mair2_Workshop___ICCV_21 (4).pdf
	MAGIC_Submission_to_Mair2_Workshop___ICCV_21 (3).pdf

