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Abstract. An efficient time-varying gesture-determined dynamical
(TV-GDD) scheme is proposed for motion planning of redundant dual-
arms manipulation. Motion planning for such tasks on humanoid robots
with a high number of degrees-of-freedom (DOF) requires computation-
ally efficient approaches to generate the expected joint configuration
when given the end-effector tasks. To do so, we investigate a time-varying
joint-limits constrained quadratic-programming (QP) approach and an
efficient numerical computing method. This strategy provides feasible
solutions at a low computation cost within physical limits. In addition,
the joint configuration can be adjusted dynamically according to the
expected gestures and tasks. Comparative simulations and experimental
results on a humanoid robot demonstrate the effectiveness and feasibility
of the scheme.

Keywords: Humanoid robot · Dual arms · Motion generation
Quadratic programming · Redundancy resolution

1 Introduction

Humanoid robots can help people immerse themselves in environments of peer-
to-peer cooperation and are thus increasingly welcomed in various applications
[1]. Dual-arms of humanoid robots can not only fulfill manipulation tasks [2],
but also perform important components of the body language [3]. In contrast
to the single-arm system, multi-arm systems can be more efficient by perform-
ing motions simultaneously [4]. The early multi-arm system can trace back to
Goertz’s remote manipulators for handling of radioactive goods in the 1940’s [5].
From the late 1950’s to the early 1970’s, dual-arms teleoperation was developed
because of the deep-sea and deep-space exploration [6].

In recent years, due to the fast development of humanoid robots [2], dual-
arm applications attract researchers and engineers’ interests again. Humanoid
robots require dual-arms to perform daily work naturally in home environment
autonomously or semi-autonomously [7]. They can also improve the sociabil-
ity with displaying emotional body language [8]. To perform daily tasks with
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Fig. 1. System architecture of the female humanoid robot.

dual-arms of humanoid robots, the dual-arms motion planning should be con-
sidered. One of the basic problems is the inverse kinematic problem. Nunez
et al. presented an analytic solution to humanoid robot arms [9], of which each
arm has three DOF. However, most humanoid robot arms in actual appli-
cations have more DOF and are thus redundant. This redundancy improves
the flexibility when the robot implement end-effector tasks [10], and inevitably
increases computation difficulties. Traditional redundancy-resolution methods
are pseudoinverse-based schemes. Wang and Li proposed a closed-loop inverse
kinematics based on pseudoinverse method, which is used to dual-arms on a
mobile platform [10]. Note that the above methods have to compute the matrix
inverse, then QP methods are preferred recently. Kanoun et al. proposed a QP-
based task priority framework to resolve the kinematic-redundancy problem [11].
Zhang and Zhang performed QP-based methods on a physical planar manipula-
tor [12]. To solve the redundant-resolution problem effectively, two redundancy-
resolution schemes are presented and their equivalence relationship was proved
[13]. However, most existing optimization methods focus on a single manipula-
tor, and only a few consider dual-arms of humanoid robots [11]. Inspired by the
above works, a QP-based online generation scheme is proposed in this paper to
generate expected gestures of dual-arms. The gestures are movements or posi-
tions of the hand, arm, body which express idea, intention, opinion, emotion,
etc. To obtain the optimization solutions of the designed QP scheme, a discrete
numerical method is presented to control the robot to finish not only tasks of
end-effectors but also some expected subtasks. The architecture of this system is
shown in Fig. 1. It allows an easier coordination of interaction between two arms.
Before ending this section, the main contributions of this paper are as follows:

• A time-varying gesture-determined dynamical (TV-GDD) scheme for dual-
arms coordinated motion generation is proposed and applied to an actual
humanoid robot.

• Different from the pseudoinverse methods or QP-based methods focusing on
single or planar dual arms, together with the numerical QP solver, the pro-
posed TV-GDD scheme can on-line generate behaviors for humanoid robots.
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• To enable generating expected arm configurations, a novel TV-GDD function
is designed, proposed and discussed in details, which can make the arms move
according to the expected gesture.

2 General Quadratic Programming Model

The presented robot in this paper is a humanoid robot with a sitting posture. It
is able to display realistic facial and body expressions. It has two arms and the
dual arms have 14 DOF (7 of each arm). The origin of Frame {0} is chosen at
the waist (i.e., the base). The forward kinematics of the dual arms is that given
the left/right joint-space vectors θL and θR, the end-effector position vectors rL

and rR can be obtained as follows:

rL = fL(θL), rR = fR(θR) (1)

where fL(·) and fR(·) are smooth nonlinear functions. Generally, Eq. (1) can
be obtained when the structure of the robot is known. One fundamental issue
for redundant robots is the inverse kinematics problem, i.e., to obtain the joint
vectors with given end-effector trajectories.

The classical approaches to solving the redundancy-resolution problem are
pseudoinverse methods. Specifically, at the joint-velocity level, the pseudoinverse
type solution can be formulated as

θ̇L = J †
L(θL)ṙL + (I − J †

L(θL)JL(θL))wL (2)

θ̇R = J †
R(θR) ˙rR + (I − J †

R(θR)JR(θR))wR (3)

where J †
L(θL) ∈ R

n×m and J †
R(θR) ∈ R

n×m denote the pseudoinverse of the
Jacobian matrices JL(θL) and JR(θR); I ∈ R

n×n is the identity matrix; wL ∈ R
n

and wR ∈ R
n are arbitrary vectors selected for optimization criteria.

The traditional pseudoinverse approaches (2)-(3) need to compute inverse
matrices and do not properly consider the inequality problems [12]. Inspired by
the previous work [13,14], an online optimization technique which resolve the
redundancy problem is designed as follows:

(1) QP-based left and right arm schemes are exploited and formulated as

minimize θ̇T
L Qθ̇L/2 + bT

LθL (4)
subject to JL(θL)θ̇L = ṙL + KL(rL − fL(θL)) (5)

θ−
L � θL � θ+

L (6)

θ̇−
L � θ̇L � θ̇+

L (7)

minimize θ̇T
RW θ̇R/2 + bT

RθR (8)
subject to JR(θR)θ̇R = ṙR + KR(rR − fR(θR)) (9)

θ−
R � θR � θ+

R (10)

θ̇−
R � θ̇R � θ̇+

R (11)
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where Q ∈ R
n×n and W ∈ R

n×n are coefficients of the quadratic terms; while
bL and bR are those pertaining to the linear terms; JL and JR are the Jaco-
bian matrices of the left/right arms, defined as J = ∂f(θ)/∂θ. Eqs. (5) and (9)
express linear relations between the left/right end-effector velocities ṙL ∈ R

m

and ṙR ∈ R
m, and joint velocities θ̇L ∈ R

n and θ̇R ∈ R
n; KL(rL − fL(θL)) and

KR(rR − fR(θR)) are position-error feedbacks, where KL and KR are positive-
definite symmetric (typically diagonal) m × m feedback-gain matrices. Eqs. (6)
and (10) are bound constraints of joint-angle limits. Eqs. (7) and (11) are bound
constraints of joint-velocity limits.

(2) To solve the above two QP problems simultaneously, (4)-(11) should be
converted to a standard QP form. The criteria (4) and (8) are integrated as

minimize
[

θ̇L

θ̇R

]T [
W 0n×n

0n×n Q

] [
θ̇L

θ̇R

]
+

[
bL

bR

]T [
θ̇L

θ̇R

]
. (12)

(3) Forward kinematics equations of left and right arms (5) and (9) are
combined together as

[
JL 03×7

03×7 JR

]
·
[

θ̇L

θ̇R

]
=

[
ṙL

ṙR

]
+

[
kL(rL − fL(θL))
kR(rR − fR(θR))

]
∈ R

2m×2n. (13)

(4) Joint-angle and joint-velocity limits of left and right arms (6) and (10)
are combined as

[
θ−
L

θ−
R

]
�

[
θL

θR

]
�

[
θ+
L

θ+
R

]
∈ R

2n,

[
θ̇−
L

θ̇−
R

]
�

[
θ̇L

θ̇R

]
�

[
θ̇+
L

θ̇+
R

]
∈ R

2n. (14)

(5) Hence, the QP formulations (4)-(7) and (8)-(11) can be reformulated as

minimize ϑ̇TMϑ̇/2 + bTϑ (15)
subject to j(ϑ)ϑ̇ = Υ̇ + K(Υ − f(ϑ)) (16)

ϑ− � ϑ � ϑ+ (17)
ϑ̇− � ϑ̇ � ϑ̇+ (18)

where ϑ = [θT
L ; θT

R]T ∈ R
2n; b = [bT

L ; bT
R]T; ϑ− = [θ−T

L , θ−T
R ]T ∈ R

2n; ϑ+ =
[θ+T

L , θ+T
R ]T ∈ R

2n; ϑ̇ = dϑ/dt = [θ̇T
L , θ̇T

R]T ∈ R
2n; ϑ̇− = [θ̇−T

L , θ̇R−T ]T ∈ R
2n;

ϑ̇+ = [θ̇+T
L , θ̇+T

R ]T ∈ R
2n; Υ̇ = [ṙT

L ; ṙT
R]T ∈ R

2n; matrices M ∈ R
2n×2n, j ∈

R
2m×2n, and K ∈ R

2m×2m are

M =
[

W 0n×n

0n×n Q

]
, j =

[
JL 0m×n

0m×n JR

]
, K =

[
KL 0m×m

0m×m KR

]

with matrix M and vector b being determined by a specific redundancy-
resolution scheme. K is the feedback gain and determined by the actual effect.
In actual applications, if M = [HL, 0; 0,HR] with H denoting the inertia matrix
and b = 0, Eqs. (15)-(18) constitute a minimum-kinetic-energy (MKE) scheme.
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If M is set as an identity matrix and b = [λ(θL−θL(0));λ(θR−θR(0))], Eqs. (15)-
(18) would be a repetitive motion planning (RMP) scheme. If M is set as an
identity matrix, and b = 0, Eqs. (15)-(18) correspond to a minimum-velocity-
norm (MVN) scheme. For simplicity and without causing loss of generality, the
latter scheme will be used in the following sections.

3 TV-GDD Scheme and Solver

Humanoid robots not only need to perform end-effector tasks, but also desire
to act as human would, like emulating human movement and adopting natural-
looking postures. Therefore, a corresponding TV-GDD scheme is proposed, and
it is solved by a discrete numerical solver.

3.1 TV-GDD Scheme

To enable the robot to generate expected gestures, some joints must be adjusted
dynamically according to the tasks with time passing by. For QP methods, the
physical limits of a joint are described as two bounds of inequality constraints.
Therefore, we can find an appropriate function that can adjust the bounds of
desired values. Mathematically, the function which adjusts the joints to the
expected states and uses to generate desired gestures dynamically is as follows:

ϑ±
new(t) = ϑ± +

ϑ±
diff

1 + e−(t−TSP)/ctuning
(19)

where ϑ±
diff = ϑ±

goal − ϑ± with ϑgoal = [ϑT
goalL, ϑT

goalR]T is the expected joint
configuration; 0 < ctuning � 1 is a time-tuning parameter, which tunes the
variation tendency; TSP = Td/N , with Td denoting the task execution duration,
and N � 1 influences the proximity between the adjusted values and the initial
value/target values. Figure 2 shows that the TV-GDD function (19) can regulate
the ith initial joint value ϑ±

i into target joint value ϑ±
goali gradually and smoothly.

Without loss of generality, consider i = 3 as an example. If ϑ−
goal3 = ϑ+

goal3 = 5,
the function can adjust the lower/upper limits of the third joint to 5 after a
period of time. Given that the robot arms are redundant, kinematic task can
still be performed while one or more of the joints is adjusted into an expected
configuration.

Consider the TV-GDD function (19), the joint constraint (17) becomes

ϑ−
new(t) � ϑ � ϑ+

new(t). (20)

Given that the redundancy-resolution method is performed at the velocity level,
the new joint limit (20) should be formulated using the constraint of ϑ̇ as

ν(ϑ−
new(t) − ϑ) � ϑ̇ � ν(ϑ+

new(t) − ϑ) (21)
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where parameter ν > 0 is used to scale the feasible region of ϑ̇. In this paper, ν
is set as 2. For the ith element, constraints (17) and (18) can be written as

max{ϑ̇−
i , ν(ϑ−

newi(t) − ϑi)} � ϑ̇i � min{ϑ̇+
i , ν(ϑ+

newi(t) − ϑi)}. (22)

With ζ−
newi(t) = max{ϑ̇−

i , ν(ϑ−
newi(t) − ϑi)} and ζ+

newi(t) = min{ϑ̇+
i , ν(ϑ+

newi(t) −
ϑi)}, the TV-GDD scheme can be formulated as

minimize ϑ̇TMϑ̇/2 + bTϑ (23)
subject to j(ϑ)ϑ̇ = Υ̇ + k(ϑ − f(ϑ)) (24)

ζ−
new(t) � ϑ̇ � ζ+

new(t). (25)

Kinematic tasks and gestures are performed simultaneously by solving QP
problem (23)–(25). Specifically, the gesture model formulated in (19) is inte-
grated into inequality (25) as the bounds, and the kinematic tasks described
by the end-effector paths ṙL and ṙR are integrated into (5), (9) and (24) as
the right-hand sides. Subsequently, the QP-based TV-GDD scheme (23)–(25) is
formulated. The scheme is then solved by a discrete QP solver, and the results
are further mapped into the robot-controllable value domain. Finally, the con-
trol data are sent to the robot controller, which drives the robot to execute the
end-effector tasks.

3.2 TV-GDD Scheme Solver

Equations (23)–(25) can be converted to a linear variational inequality (LVI)
[12], which is further equivalent to the following linear projection equation:

ΦΩ(u − (Γu + q)) − u = 0 (26)

where ΦΩ(·) : R
2n+2m → Ω is a projection operator, Ω = {u|u− � u � u+} ⊂

R
2n+2m, 1ι := [1, · · · , 1]T ∈ R

ι

u :=
[

ϑ
ι

]
, u+ :=

[
ζ+
new(t)
ω1ι

]
∈ R

2n+2m, u− :=
[

ζ−
new(t)
−ω1ι

]
∈ R

2n+2m,

Γ :=
[

M −jT(ϑ)
j(ϑ) 0

]
∈ R

(2n+2m)×(2n+2m), q :=
[

0
−Υ̇

]
∈ R

2n+2m.
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In addition, u ∈ R
m is the primal-dual decision vector, u− ∈ R

m and u+ ∈ R
m

are the lower and upper bounds of u, respectively, and ω is set as a sufficiently
large value (e.g., in the simulations and experiments, � = 1010).

To solve Eq. (26), by defining ε(u) := u − ΦΩ(u − (Γu + q)), the following
iterative algorithm causes ε(u) → 0. Supposing that the initial primal-dual deci-
sion variable vector is set as u0 ∈ R

2n+2m, for iteration number k = 0, 1, 2, · · · ,
if uk �∈ Ω∗, then [15]

uk+1 = uk − ‖ε(uk)‖2
2σ(uk)

‖σ(uk)‖2
2

(27)

where ε(uk) = uk − ΦΩ(uk − (Γuk + q)) and σ(uk) = (ΓT + I)ε(uk). For the
numerical calculation, ε(uk) = 10−5.

4 Simulations and Experiments

In this section, the scheme on the physical humanoid robot is performed. The
end-effector task is to play a ball game. In the simulations, the initial joints of
the left/right arms are ϑL(0) = [π/40,−π/10, π/30, 0,−131π/360, π/3, 11π/36]T

(rad) and ϑR(0) = [−π/40, π/10,−π/30, π,−131π/360, π/3, −25π/36] (rad),
respectively. This task requires the speeds of both hands to be equal to each
other; i.e., ṙL = ṙR. The execution duration is Td = 6T = 18 s. The upper/lower
limits of the joint velocities of the dual arms are 6 rad/s and −6 rad/s, respec-
tively.

4.1 Synthesized by Pseudoinverse Scheme

For comparison, the pseudoinverse scheme (2)–(3) are applied to the redundancy
problem of the dual arms. The end-effector task is to move the ball up, left, down,
and then move back. This is to match the latter experiment which tries to move
the ball from one cup to another. To illustrate these problems clearly, joint val-
ues and velocities of the dual arms synthesized by the pseudoinverse method are
shown in Figs. 3 and 4, respectively. Evidently, the generated joint values syn-
thesized by the traditional pseudoinverse scheme (2)–(3) run out of the expected
values. That is to say, it cannot accomplish the expected gesture-configuration
task. In summary, from the above analysis, the traditional pseudoinverse scheme
(2)–(3) is unexpected in actual applications. Specifically, one problem is some
joint values or velocities may exceed their physical limits. Another problem is the
hands cannot hold the rod stably and the hand gesture would be very strange
due to the free rotation of the forearms and wrist.

4.2 Synthesized by TV-GDD Scheme

The TV-GDD scheme is employed to complete the same end-effector task. To
keep the forearms and waists moving as little as possible and finally go to an
expected gesture, the TV-GDD function (19) is employed. Specifically, TSP =
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Fig. 5. Dual-arms joint values of the humanoid robot synthesized by TV-GDD scheme
(23)-(25). The ith joint value ϑnewi subject to ϑ±

newi with i = 1, 2, . . . , 14, respectively.
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Fig. 6. Dual-arms joint velocities of the humanoid robot synthesized by TV-GDD
scheme (23)-(25). The ith joint velocity ϑ̇newi subject to ζ±

newi with i = 1, 2, . . . , 14.

0.75 s, ctuning = 1, ϑ+
goalL = [9π/180, π/10, 22.5π/180, π/2, 0, π/3, 55π/180]T rad,

ϑ−
goalL = [0,−54π/180,−10.5π/180, 0,−131π/180, π/3, 55π/180]T rad, ϑ+

goalR =
[0, 54π/180, 10.5π/180, π, 0, π/3, −25π/36]T rad, ϑ−

goalR = [−9π/180,−18π/180,

−22.5π/180, π/2,−131π/180, π/3,−25π/36]T rad.
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Fig. 7. Snapshots of task execution when the humanoid robot plays with a ball.
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Fig. 8. Positioning-errors of end-effectors (hands) synthesized by the TV-GDD scheme.

To illustrate the effectiveness of the combined time-varying constraint (25) in
the scheme, the joint values and velocities of the dual arms during the execution
of the task are shown in Figs. 5–6. As shown in Fig. 5, with (19), the upper/lower
joint limits tend to overlap after approximately 5 s. This drives joints ϑ6, ϑ7, ϑ13

and ϑ14 to an expected configuration. Furthermore, it also avoids the unex-
pected rotation of the forearm and wrist at later stages. Figure 6 shows that
all the generated joint values never exceed their physical limits and thus that
this scheme is applicable. To examine the computational cost, the average com-
puting time within each sampling interval (TAve), and the total computing time
within each experiment (TSum), are measured. While the robot plays with the
ball, TAve = 0.001 s and TSum = 1.12 s, which are both very small compared with
the total task execution time Td = 18 s, thus validating that the computing task
can be completed within each sampling interval during the ball-playing experi-
ment. The snapshots during the task execution is shown in Fig. 7. The dual arms
lift a yellow ball through a “V” shape stick. It moves the ball along a straight
path, places it in another cup, and then move back. During the experiment, the
robot moves the ball very well, and keep its hand gesture as expected. Figure 8
shows the positioning-errors of the left/right end-effectors (hands). The errors
are measured by the deviations of the generated end-effector trajectories from
the desired end-effector paths; i.e., E = Υ − f(ϑ). It is worth mentioning that
the MAE is just 2.1832 × 10−5 m, all AAE are less than 6.2 × 10−6 m, and the
RMSE are less than 8.41 × 10−6 m. These tiny errors demonstrate further the
accuracy of the TV-GDD scheme in solving the redundancy-resolution problem.
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In summary, the above simulations and physical experiment verify that the
proposed TV-GDD scheme is effective, accurate and physically realizable.

5 Concluding Remarks

A novel time-varying-constrained scheme for dual-arms motion generation has
been proposed and investigated. To generate an expected motion configuration, a
time-varying gesture-determined dynamical function is designed. Based on such
function, a TV-GDD scheme is derived. To solve such a scheme so as to generate
the expected motions, a discrete QP solver is presented and used. These gener-
ated optimal solutions are used to control the physical humanoid robot. Both
the computer simulations and physical experiments demonstrate the effective-
ness and feasibility of the proposed TV-GDD scheme.
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